Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2014, Vol. 34 Issue (2): 498-506    DOI: 10.7522/j.issn.1000-694X.2013.00343
    
Global Solar Radiation over Different Underlying Surfaces in the Taklimakan Desert
Jin Lili1, He Qing1,2, Li Zhenjie3, Ali Mamtimin1,2
1. College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Taklimakan Desert Atmosphere and Environment Observation Experiment Station, Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China;
3. Lincang Meteorological Bureau, Lincang 677099, Yunnan, China
Download:  PDF (3911KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The global solar radiation data collected in observation station in Xiaotang (40 48'N,84°18'E), Hade (40°46'N,83°42'E) and Tazhong (38°58'N,83°39'E) from 2010 to 2011 were used to analyze the characteristics of the diurnal variation of the global solar radiation over different underlying surfaces in the Taklimakan Desert. The results show that the annual total global solar radiation is 5 666.4 MJ·m-2, 5 774.5 MJ·m-2 and 6 515.0 MJ·m-2 in Xiaotang, Hade and Tazhong station, respectively. The seasonal change of the global solar radiation of Tazhong is higher than Xiaotang and Hade, and it is similar in Xiaotang and Hade. The maximum global solar radiation is in summer in the three stations, and minimum in winter, it is higher in spring than in autumn. The maximum/minimum values of monthly total global solar radiation are in June/December in Tazhong, but the maximum/minimum values reach the peaks/troughs in July/December in Xiaotang and Hade. The global solar radiation in Tazhong is higher than in Xiaotang and Hade, the difference values are 99.4 MJ·m-2 and 81.9 MJ·m-2, respectively. The peak value of mean global solar radiation appears at 12:00, and the lowest value appears in the morning or evening. The diurnal variation of global solar radiation is irregular on sand-storm day because the global solar radiation is obviously influenced by sand-storm. The peak values of global solar radiation decrease on sand-storm day by 40.3%, 56.2% and 53.0% in Xiaotang, Hade and Tazhong, respectively, and the daily total global solar radiation is reduced by 41.6%, 57.8% and 61.2%, respectively. The attenuation of global solar radiation is still apparent after sandstorm day, and the daily curve shows previous state when the sandstorm process stop. Sand-dust process can increase/decrease low-value/high-value (especially global solar radiation >500 W·m-2)probability distribution to influence the global solar radiation obviously. The global solar radiation increases with the solar zenith angle. The value of global solar radiation is high on clear day but small on sand-dust day at the same solar zenith angle.
Key words:  global solar radiation      dust      probability distribution      Taklimakan Desert      underlying surface     
Received:  08 April 2013      Published:  20 March 2014
ZTFLH:  P422.1  
Articles by authors

Cite this article: 

Jin Lili, He Qing, Li Zhenjie, Ali Mamtimin. Global Solar Radiation over Different Underlying Surfaces in the Taklimakan Desert. JOURNAL OF DESERT RESEARCH, 2014, 34(2): 498-506.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00343     OR     http://www.desert.ac.cn/EN/Y2014/V34/I2/498

[1] 杨兴国,马鹏里,王润元,等.陇中黄土高原夏季地表辐射特征分析[J].中国沙漠,2005,25(1):55-62.
[2] 刘波,马柱国,冯锦明.1960-2004年新疆地区地表水热过程的数值模拟研究.Ⅰ.以观测资料为基础的陆面过程模型大气驱动场的发展[J].中国沙漠,2012,32(2):491-502.
[3] Supit I,Van Kappel R R.A simple method to estimate global radiation[J].Solar Energy,1998,63:147-160.
[4] Yorukoglu M,Celik A N.A critical review on the estimation of daily global solar radiation from sunshine duration[J].Energy Conversion and Management,2006,47:2441-2450.
[5] Iziomon M G,Mayer H.Assessment of some global solar radiation parameterizations[J].Journal of Atmospheric and Solar-Terrestrial Physics,2002,64:1631-1643.
[6] Almorox J,Hontoria C.Global solar radiation estimation using sunshine duration in Spain[J].Energy Conversion and Management,2004,45:1529-1535.
[7] El-Metwally M.Sunshine and global solar radiation estimation at different sites in Egypt[J].Journal of Atmospheric and Solar-Terrestrial Physics,2005,67:1331-1342.
[8] Ceballos J C,De A Moura G B.Solar radiation assessment using Meteosat 4-VIS imagery[J].Solar Energy,1997,60:209-219.
[9] Perez R,Seals R,Zelenka A.Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data[J].Solar Energy,1997,60:89-96.
[10] 李明财,熊明明,杨艳娟,等.环渤海地区1961-2010年太阳总辐射时空变化特征[J].气候变化研究进展,2012,8(2):119-123.
[11] 杨羡敏,曾燕,邱新法,等.1960-2000年黄河流域太阳总辐射气候变化规律研究[J].应用气象学报,2005,16(2):243-248.
[12] 李占清,翁笃鸣.丘陵山地总辐射的计算模式[J].气象学报,1988,46(4):461-468.
[13] Stanhill G,Cohen S.Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences[J].Agricultural and Forest Meteorology,2001,107:255-278.
[14] Li R,Zhao L,Ding Y J,et al.A study of the effect of global radiation and other factors on seasonal maximum frozen depth in the Tibetan Plateau[C]//Power Engineering and Automation Conference (PEAM),2001,3:243-253.
[15] 何清,缪启龙,李帅,等.塔克拉玛干沙漠腹地总辐射变化特征及影响因子分析[J].中国沙漠,2008,28(5):896-902.
[16] 李江风.塔克拉玛干沙漠及其周边山区天气气候[M].北京:科学出版社,2003.
[17] 李江风.沙漠气候[M].北京:气象出版社,2002.
[18] 胡列群,袁玉江.塔克拉玛干沙漠辐射平衡研究[J].干旱区地理,1996,19(3):16-23.
[19] 李帅,胡列群,何清,等.塔克拉玛干沙漠腹地地表辐射收支特征研究[J].中国沙漠,2012,32(4):1035-1044.
[20] 何清,金莉莉,杨兴华.沙漠腹地紫外辐射特征及影响因子分析[J].沙漠与绿洲气象,2011,5(5):7-14.
[21] 何清,金莉莉,李帅,等.塔克拉玛干沙漠腹地太阳紫外辐射特征[J].资源科学,2010,32(8):1462-1470.
[22] 何清,金莉莉,艾力·买买提明,等.塔克拉玛干沙漠腹地太阳紫外UV-B辐射的观测与分析[J].中国沙漠,2010,30(3):640-647.
[23] 何清,金莉莉,杨兴华,等.塔中紫外辐射与气象要素的关系[J].干旱区研究,2011,28(6):901-912.
[24] 何清,缪启龙,李帅,等.塔克拉玛干沙漠腹地的长波辐射变化特征[J].高原气象,2009,28(3):642-646.
[25] 李帅,何清,周立平,等.塔克拉玛干沙漠腹地净辐射变化特征[J].干旱区研究,2009,26(5):644-648.
[26] 杜鹤强,韩致文,王涛,等.新月形沙丘表面风速廓线与风沙流结构变异研究[J].中国沙漠,2012,32(1):9-16.
[27] 丁国栋,赵延宁,马玉明.沙漠学概论[M].北京:中国林业出版社,2002:119-123.
[28] He Q,Zhao J F,Nagashima Hideki.The distribution of sandstorms in Taklimakan Desert[J].Journal of Arid Land Studies,1996,5:185-193.
[29] 何清,赵景峰.塔里木盆地浮尘时空分布及对环境影响的研究[J].中国沙漠,1997,17(2):119-126.
[30] 杨兴华,李红军,何清,等.塔克拉玛干沙漠荒漠过渡带春季风沙活动特征——以肖塘为例[J].中国沙漠,2012,32(4):915-920.
[31] Gorjian S,Hashjin T T,Ghobadicm B.Estimation of mean monthly and hourly global solar radiation on surfaces tracking the sun:case study:Tehran[C]//2012 Second Iranian Conference on renewable energy and distributed gengration,2012:172-177.
[32] Akpabio L E,Etuk S E.Relationship between global solar radiation and sunshine duration for Onne,Nigeria[J].Turkish Journal of Physics,2003,27:161-167.
[33] El-Sebaii A A,Trabea A A.Estimation of global solar radiation on horizontal surfaces over Egypt[J].Egypt Journal of Solids,2005,28(1):163-175.
[34] 王慧,胡泽勇,李栋梁,等.黑河地区鼎新戈壁与绿洲和沙漠下垫面地表辐射平衡气候学特征的对比分析[J].冰川冻土,2009,31(3):464-473.
[35] 江灏,季国良,吕兰芝.HEIFE绿洲区的太阳紫外辐射[J].高原气象,1994,13(3):346-352.
[36] 杜尧东,毛慧琴,刘爱君,等.广东省太阳总辐射的气候学计算及其分布特征[J].资源科学,2003,25(6):66-70.
[37] 季国良,邹基玲.干旱地区绿洲和沙漠辐射收支的季节变化[J].高原气象,1994,13(3):323-329.
[38] 买买提艾力·买买提依明,缪启龙,金莉莉,等.塔克拉玛干沙漠腹地散射辐射特征[J].中国沙漠,2013,33(5):1492-1500.
[39] Al-Mohamad A.Global,direct and diffuse solar-radiation in Syria[J].Applied Energy,2004,79(2):191-200.
[40] El-Sebaii A A,Al-Hazmi F S,Al-Ghamdi A A,et al.Global,direct and diffuse solar radiation on horizontal and tited surfaces in Jeddah,Saudi Arabia[J].Applied Energy,2010,87(2):568-576.
[41] Togˇrul I T,Onat E.A study for estimating solar radiation in Elazigˇ using geographical and meteorological data[J].Energy Conversion and Management,1999,40(14):1577-1584.
[42] 巩远发,段廷扬,陈隆勋,等.1997/1998年青藏高原西部地区辐射平衡各分量变化特征[J].气象学报,2005,63(2):225-235.
[43] 段海霞,赵建华,李耀辉.2011年春季中国北方沙尘天气过程及其成因[J].中国沙漠,2013,33(1):179-186.
[44] 尹宪志,任余龙,马旭洁,等.2011年4月28-29日中国北方强沙尘暴发生机制位涡分析[J].中国沙漠,2013,33(1):195-204.
[45] 刘新春,钟玉婷,何清,等.塔克拉玛干沙漠腹地沙尘气溶胶质量浓度垂直分布特征[J].中国沙漠,2012,32(4):1045-1052.
[46] 杨婧,刘志璋,孟斌,等.基于MATLAB的太阳辐射资源计算[J].能源工程,2011,(1):34-38.
No Suggested Reading articles found!