Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2014, Vol. 34 Issue (4): 1015-1022    DOI: 10.7522/j.issn.1000-694X.2013.00402
    
Anatomical Types and 13C/12C Values of Assimilating Organs in 30 C4 Species from Chenopodiaceae in Xinjiang, China
Wen Zhibin1, Zhang Mingli1,2
1. Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Download:  PDF (3353KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To examine the anatomical types of leaves and assimilating shoots in Chenopodiaceae and evaluate their carbon isotope fractionation values, a total of 30 species representing 4 tribes (Atripliceae, Camphorosmeae, Suaedeae and Salsoleae) in Xinjiang were examined using light microscopy and carbon 13C/12C isotope fractionation value. There are 12 leaf anatomical types. In tribe Atripliceae, it includes two leaf anatomical types, Atriplicoid-Ⅰ and Atriplicoid-Ⅱ. The only difference between these two types is the presence or absence of hypodermis. In tribe Camphorosmeae, there are three leaf anatomical types, including Kochioid-Ⅰ type with hypodermis, Kochioid-Ⅱ type with Kranz cells forming arcs or almost a ring, and Kochioid-Ⅲ type without hypodermis. In tribe Suaedeae, it includes three leaf anatomical types, Kranz-Suaedoid-Ⅰ and Kranz-Suaedoid-Ⅱ are with hypodermis. Borszczowia aralocaspica is of the Kranz-Suaedoid-Ⅱ type, with a distinctive one layer of mesophyll cells. Kranz-Suaedoid-Ⅲ type is without hypodermis. There are four anatomical types of leaves and assimilating shoots in Salsoleae. The differences between four leaf anatomical types in Salsoleae are the presence or absence of hypodermis, the position of small peripheral vascular bundles and complete or incomplete Kranz layer. The carbon isotope fractionation values for 30 species are ranged from -11.4‰ to -14.5‰, suggestive of a possible C4 pathway, which coincides with the leaf anatomical structures.
Key words:  leaf      assimilating shoot      anatomical type      C4 plant      Chenopodiaceae      carbon isotope fractionation value      Xinjiang     
Received:  25 April 2013      Published:  20 July 2014
ZTFLH:  Q944.52  
Corresponding Authors:  张明理(Email:zhangml@ibcas.ac.cn)     E-mail:  zhangml@ibcas.ac.cn
Articles by authors
Wen Zhibin
Zhang Mingli

Cite this article: 

Wen Zhibin, Zhang Mingli. Anatomical Types and 13C/12C Values of Assimilating Organs in 30 C4 Species from Chenopodiaceae in Xinjiang, China. JOURNAL OF DESERT RESEARCH, 2014, 34(4): 1015-1022.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00402     OR     http://www.desert.ac.cn/EN/Y2014/V34/I4/1015

[1] Sage R F,Li M R,Monson R K.The taxonomic distribution of C4 photosynthesis[M]//Sage R F,Monson R K.C4 Plant Biology.California,USA:Academic Press,1999:551-584.
[2] 中国植物志编辑委员会.中国植物志(第二十五卷,第二分册)[M].北京:科学出版社,1979:1-192.
[3] 新疆植物志编辑委员会.新疆植物志(第二卷,第一分册)[M].乌鲁木齐:新疆科技卫生出版社,1994:1-112
[4] 黄俊华.中国猪毛菜属(Salsola L.)植物的地理分布特点[J].干旱区地理,2005,28(3):325-329.
[5] 刘建国.猪毛菜属的系统与地理分布[J].植物科学杂志,1991,11(1):101-107.
[6] 朱格麟.藜科植物的起源、分化和地理分布[J].植物分类学报,1995,34(5):486-504.
[7] Carolin R C,Jacobs S W L,Vesk M.Leaf structure in Chenopodiaceae[J].Botanishe Jahrbucher fur Systematishe Pflanzengeschichte und Pflanzengeographie,1975,95:226-255.
[8] Edwards G E,Voznesenskaja E V.C4 photosynthesis:Kranz forms and single-cell C4 in terrestrial plants[M]//Raghavendra A S,Sage R F.C4 Photosynthesis and Related CO2 Concentrating Mechanisms.Berlin,Germany:Springer,2011:29-61.
[9] Freitag H,Stichler W.A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae[J].Plant Biology,2000,2:154-160.
[10] Kadereit G,Borsch T,Weising K,et al.Phylogeny of Aamaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis[J].International Journal of Plant Sciences,2003,164:959-986.
[11] Pyankov V I,Gunin P D,Tsong S,et al.C4 plants in the vegetation of Mongolia:their natural occurrence and geographical distribution in relation to climate[J].Oecologia,2000,123:15-31.
[12] Pyankov V I,Voznesenskaya E V,Kuz'min A N,et al.Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (Chenopodiaceae)[J].Photosynthesis Research,2000,63:69-84.
[13] 邓彦斌,姜彦成,刘健.新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究[J].植物生态学报,1998,22(2):164-170.
[14] 高松,苏培玺,严巧娣,等.C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征[J].植物生态学报,2009,33(2):347-354.
[15] 黄振英,吴鸿,胡正海.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,21(6):521-530.
[16] 苏培玺,安黎哲,马瑞君,等.荒漠植物梭梭和沙拐枣的花环结构及C4光合特征[J].植物生态学报,2005,29(1):1-7.
[17] Akhani H,Trimborn P,Ziegler H.Photosynthetic pathways in Chenopodiaceae from Africa,Asia and Europe with their ecological,phytogeographical and taxonomical importance[J].Plant Systematics and Evolution,1997,206:187-221.
[18] Pyankov V I,Kuz'min A N,Demidov E D,et al.Diversity of biochemical pathways of CO2 fixation in plants of the families Poaceae and Chenopodiaceae from arid zone of Central Asia[J].Soviet Plant Physiology,1992,39:411-420.
[19] Pyankov V I,Voznesenskaya E V,Kondratschuk A V,et al.A comparative anatomical and biochemical analysis in Salsola (Chenopodiaceae) species with and without a Kranz type leaf anatomy:A possible reversion of C4 to C3 photosynthesis[J].American Journal of Botany,1997,84:597-606.
[20] Voznesenskaya E V,Gamaley Y V.The ultrastructural characteristics of leaf types with Kranz-anatomy[J].Botanicheskii Zhurnal,1986,71:1291-1307.
[21] Zalenskii O,Glagoleva T A.Pathways of carbon metabolism in halophytic desert species from Chenopodiaceae[J].Photosynthetica,1981,15:244-255.
[22] 王勋陵.植物生态解剖学研究进展[J].植物学通报,1993,10(增刊):1-10.
[23] 李正理,李荣敖.我国甘肃九种旱生植物同化枝的解剖观察[J].植物学报,1981,23(3):181-185.
[24] 严巧娣,苏培玺,陈宏彬,等.五种C4荒漠植物光合器官中含晶细胞的比较分析[J].植物生态学报,2008,32(4):873-882.
[25] 田中平,陆嘉惠,杨清理,等.三种生境角果藜茎叶的解剖结构及生态适应[J].石河子大学学报(自然科学版),2008,26(6):668-671.
[26] Aliscioni S S,Denham S S.A typical foliar anatomy related to Kranz syndrome in Paspalum inaequivalve and Paspalum microstachyum (Poaceae:Panicoideae:Paniceae)[J].Flora,2009,204:718-729.
[27] 郑国锠,谷祝平.生物显微技术[M].北京:高等教育出版社,1994:1-447.
[28] Bender M M,Rouhani I,Vines H M,et al.13C/12C ratio changes in Crassulaceae acid metabolism[J].Plant Physiology,1973,52:427-430.
[29] Schulze E D,Ellis R,Schulze W,et al.Diversity,metabolic type and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form,precipitation and habitat conditions[J].Oecologia,1996,106:352-369.
[30] Voznesenskaya E V,Franceschi V R,Kiirats O,et al.Kranz anatomy is not essential for terrestrial C4 plant photosynthesis[J].Nature,2001,414:543-546.
[31] Esau K.Anatomy of Seed Plants[M].New York,USA:Wiley,1977:45-85.
[32] Starlfelt M G.The Role of the epidermal cells in the stomatal movements[J].Physiologia Plantarum,1966,19:241-256.
[33] 刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学与地植物学丛刊,1982,6:314-319.
[34] Toderich K,Black C C,Juylova E,et al.C3/C4 plants in the vegetation of Central Asia,geographical distribution and environmental adaptation in relation to climate[M]//Lal R,Suleimenov M,Stewart B A.Climate Change and Terrestrial Carbon Sequestration in Central Asia.London,UK:Taylor and Francis Group,2007:33-66.
[35] Niklas K J.A mechanical perspective on foliage leaf form and function[J].New Phytologist,1999,143:19-31.
No Suggested Reading articles found!