Journal of Desert Research ›› 2020, Vol. 40 ›› Issue (5): 130-141.DOI: 10.7522/j.issn.1000-694X.2020.00015
Previous Articles Next Articles
Hong Zhoua,2(), Bo Wua,2(
), Ying Gaoa,2, Long Chenga, Xiaohong Jiaa,2, Yingjun Panga, Heju Zhaoa
Received:
2020-02-12
Revised:
2020-03-25
Online:
2020-09-28
Published:
2020-09-28
Contact:
Bo Wu
CLC Number:
Hong Zhou, Bo Wu, Ying Gao, Long Cheng, Xiaohong Jia, Yingjun Pang, Heju Zhao. Composition and influencing factors of the biological soil crust bacterial communities in the Sabina vulgaris community in Mu Us Sandy Land[J]. Journal of Desert Research, 2020, 40(5): 130-141.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2020.00015
项目 | 裸沙 | 微生物结皮 | 藻结皮 | 地衣结皮 | 苔藓结皮 |
---|---|---|---|---|---|
土壤含水量/% | 5.27±0.11d | 12.67±1.50c | 15.11±0.90c | 18.66±1.78b | 22.25±1.49a |
有机碳/(g·kg-1) | 0.80±0.07d | 6.24±0.41c | 11.74±0.83b | 16.47±1.35b | 20.92±0.58a |
全碳/(g·kg-1) | 2.27±0.18d | 15.44±1.64c | 20.05±2.01c | 24.22±0.52b | 28.71±3.93a |
全氮/(g·kg-1) | 0.37±0.11c | 0.76±0.15b | 0.76±0.09b | 0.79±0.09b | 1.33±0.18a |
硝态氮/(mg·kg-1) | 1.61±0.03a | 1.60±0.02a | 1.32±0.07b | 0.87±0.07c | 0.68±0.10c |
铵态氮/(mg·kg-1) | 0.48±0.16 | 0.51±0.19 | 0.55±0.09 | 0.53±0.04 | 0.58±0.15 |
全磷/(g·kg-1) | 0.51±0.05b | 0.53±0.06b | 0.65±0.06a | 0.66±0.04a | 0.68±0.02a |
pH | 7.07±0.03a | 7.01±0.01a | 7.02±0.01a | 6.91±0.03b | 6.89±0.01b |
Table 1 Physicochemical characteristics in four developmental stages of biological soil crusts (mean±SE)
项目 | 裸沙 | 微生物结皮 | 藻结皮 | 地衣结皮 | 苔藓结皮 |
---|---|---|---|---|---|
土壤含水量/% | 5.27±0.11d | 12.67±1.50c | 15.11±0.90c | 18.66±1.78b | 22.25±1.49a |
有机碳/(g·kg-1) | 0.80±0.07d | 6.24±0.41c | 11.74±0.83b | 16.47±1.35b | 20.92±0.58a |
全碳/(g·kg-1) | 2.27±0.18d | 15.44±1.64c | 20.05±2.01c | 24.22±0.52b | 28.71±3.93a |
全氮/(g·kg-1) | 0.37±0.11c | 0.76±0.15b | 0.76±0.09b | 0.79±0.09b | 1.33±0.18a |
硝态氮/(mg·kg-1) | 1.61±0.03a | 1.60±0.02a | 1.32±0.07b | 0.87±0.07c | 0.68±0.10c |
铵态氮/(mg·kg-1) | 0.48±0.16 | 0.51±0.19 | 0.55±0.09 | 0.53±0.04 | 0.58±0.15 |
全磷/(g·kg-1) | 0.51±0.05b | 0.53±0.06b | 0.65±0.06a | 0.66±0.04a | 0.68±0.02a |
pH | 7.07±0.03a | 7.01±0.01a | 7.02±0.01a | 6.91±0.03b | 6.89±0.01b |
样品分组 | ANOSIM | MRPP | Adonis | |||
---|---|---|---|---|---|---|
R | P | A | P | R2 | P | |
裸沙-微生物结皮 | 0.986 | 0.002 | 0.009 | 0.003 | 0.746 | 0.002 |
裸沙-藻结皮 | 0.926 | 0.014 | 0.087 | 0.021 | 0.594 | 0.018 |
裸沙-地衣结皮 | 0.996 | 0.008 | 0.051 | 0.004 | 0.684 | 0.006 |
裸沙-苔藓结皮 | 0.979 | 0.003 | 0.160 | 0.028 | 0.793 | 0.022 |
微生物结皮-藻结皮 | 0.370 | 0.048 | 0.013 | 0.041 | 0.184 | 0.039 |
微生物结皮-地衣结皮 | 0.926 | 0.009 | 0.106 | 0.039 | 0.364 | 0.028 |
微生物结皮-苔藓结皮 | 0.778 | 0.028 | 0.120 | 0.026 | 0.376 | 0.004 |
藻结皮-地衣结皮 | 0.222 | 0.045 | 0.012 | 0.023 | 0.210 | 0.047 |
藻结皮-苔藓结皮 | 0.370 | 0.039 | 0.022 | 0.035 | 0.195 | 0.036 |
地衣结皮-苔藓结皮 | 0.481 | 0.033 | 0.104 | 0.020 | 0.358 | 0.011 |
Table 2 Dissimilarity tests of the bacterial community compositions in different developmental stages of biological soil crusts
样品分组 | ANOSIM | MRPP | Adonis | |||
---|---|---|---|---|---|---|
R | P | A | P | R2 | P | |
裸沙-微生物结皮 | 0.986 | 0.002 | 0.009 | 0.003 | 0.746 | 0.002 |
裸沙-藻结皮 | 0.926 | 0.014 | 0.087 | 0.021 | 0.594 | 0.018 |
裸沙-地衣结皮 | 0.996 | 0.008 | 0.051 | 0.004 | 0.684 | 0.006 |
裸沙-苔藓结皮 | 0.979 | 0.003 | 0.160 | 0.028 | 0.793 | 0.022 |
微生物结皮-藻结皮 | 0.370 | 0.048 | 0.013 | 0.041 | 0.184 | 0.039 |
微生物结皮-地衣结皮 | 0.926 | 0.009 | 0.106 | 0.039 | 0.364 | 0.028 |
微生物结皮-苔藓结皮 | 0.778 | 0.028 | 0.120 | 0.026 | 0.376 | 0.004 |
藻结皮-地衣结皮 | 0.222 | 0.045 | 0.012 | 0.023 | 0.210 | 0.047 |
藻结皮-苔藓结皮 | 0.370 | 0.039 | 0.022 | 0.035 | 0.195 | 0.036 |
地衣结皮-苔藓结皮 | 0.481 | 0.033 | 0.104 | 0.020 | 0.358 | 0.011 |
分类水平 | 物种 | 相对丰度/% | ||||
---|---|---|---|---|---|---|
裸沙 | 微生物结皮 | 藻结皮 | 地衣结皮 | 苔藓结皮 | ||
门水平 | 放线菌 (Actinobacteria) | 10.3±0.5c | 16.8±2.2b | 19.0±0.3a | 19.9±1.5a | 22.3±1.5a |
酸杆菌 (Acidobacteria) | 3.1±0.3c | 4.2±0.8b | 5.6±0.7a | 7.1±0.4a | 8.0±0.3a | |
拟杆菌 (Bacteroidetes) | 3.3±0.9b | 3.4±1.0b | 7.7±1.4a | 7.8±0.5a | 7.9±0.4a | |
绿弯菌 (Chloroflexi) | 1.2±0.3b | 1.2±0.1b | 2.1±0.2a | 2.2±0.2a | 2.2±0.1a | |
蓝藻 (Cyanobacteria) | 0.3±0.1d | 2.0±0.8c | 7.2±0.7a | 6.4±0.4b | 1.8±0.6c | |
变形菌 (Proteobacteria) | 69.3±2.3a | 57.2±1.7a | 47.1±8.1b | 47.3±1.8b | 48.1±1.5b | |
厚壁菌 (Firmicutes) | 7.0±1.1a | 6.4±0.7a | 3.6±0.3b | 3.7±0.5b | 3.2±1.0c | |
芽单胞菌(Gemmatimonadetes) | 1.3±0.7a | 2.6±0.7a | 3.6±0.5a | 3.1±0.6a | 3.4±1.5a | |
浮霉菌 (Planctomycetes) | 0.5±0.2a | 1.5±0.5a | 0.9±0.5a | 1.1±0.3a | 1.6±0.2a | |
属水平 | 鞘氨醇单胞菌(Sphingomonas) | 0.7±0.3c | 3.0±0.3b | 3.6±1.3ab | 3.9±0.6a | 4.7±0.6a |
马赛菌 (Massilia) | 0.6±0.2d | 1.3±0.3c | 3.2±0.3b | 6.9±1.4a | 4.1±1.6a | |
微枝形杆菌 (Microvirga) | 0.7±0.2c | 3.4±0.6b | 3.1±0.5b | 4.1±0.5b | 5.7±0.3a | |
微鞘藻 (Microcoleus) | 0.1±0.1c | 1.3±0.4b | 3.8±1.0a | 1.5±0.2b | 0.3±0.1c | |
罗尔斯顿菌 (Ralstonia) | 38.0±5.5a | 6.6±0.4b | 3.3±0.5c | 1.6±0.8c | 1.5±0.1c | |
戴尔福特菌 (Delftia) | 7.4±0.8a | 6.5±0.4a | 2.4±0.3b | 1.7±0.4b | 0.4±0.1c | |
不动杆菌 (Acinetobacter) | 3.0±1.4a | 0.7±0.6b | 1.2±1.6ab | 1.3±0.1ab | 0.7±0.4b | |
Rubellimicrobium | 0.6±0.5a | 2.4±1.1a | 2.4±1.4a | 2.1±0.6a | 1.8±0.7ab | |
红色杆菌 (Rubrobacter) | 0.9±0.3b | 3.1±0.5a | 2.6±1.0a | 1.8±0.8ab | 2.3±1.1a |
Table 3 The relative abundance of bacteria (>1%) in different developmental stages of BSCs
分类水平 | 物种 | 相对丰度/% | ||||
---|---|---|---|---|---|---|
裸沙 | 微生物结皮 | 藻结皮 | 地衣结皮 | 苔藓结皮 | ||
门水平 | 放线菌 (Actinobacteria) | 10.3±0.5c | 16.8±2.2b | 19.0±0.3a | 19.9±1.5a | 22.3±1.5a |
酸杆菌 (Acidobacteria) | 3.1±0.3c | 4.2±0.8b | 5.6±0.7a | 7.1±0.4a | 8.0±0.3a | |
拟杆菌 (Bacteroidetes) | 3.3±0.9b | 3.4±1.0b | 7.7±1.4a | 7.8±0.5a | 7.9±0.4a | |
绿弯菌 (Chloroflexi) | 1.2±0.3b | 1.2±0.1b | 2.1±0.2a | 2.2±0.2a | 2.2±0.1a | |
蓝藻 (Cyanobacteria) | 0.3±0.1d | 2.0±0.8c | 7.2±0.7a | 6.4±0.4b | 1.8±0.6c | |
变形菌 (Proteobacteria) | 69.3±2.3a | 57.2±1.7a | 47.1±8.1b | 47.3±1.8b | 48.1±1.5b | |
厚壁菌 (Firmicutes) | 7.0±1.1a | 6.4±0.7a | 3.6±0.3b | 3.7±0.5b | 3.2±1.0c | |
芽单胞菌(Gemmatimonadetes) | 1.3±0.7a | 2.6±0.7a | 3.6±0.5a | 3.1±0.6a | 3.4±1.5a | |
浮霉菌 (Planctomycetes) | 0.5±0.2a | 1.5±0.5a | 0.9±0.5a | 1.1±0.3a | 1.6±0.2a | |
属水平 | 鞘氨醇单胞菌(Sphingomonas) | 0.7±0.3c | 3.0±0.3b | 3.6±1.3ab | 3.9±0.6a | 4.7±0.6a |
马赛菌 (Massilia) | 0.6±0.2d | 1.3±0.3c | 3.2±0.3b | 6.9±1.4a | 4.1±1.6a | |
微枝形杆菌 (Microvirga) | 0.7±0.2c | 3.4±0.6b | 3.1±0.5b | 4.1±0.5b | 5.7±0.3a | |
微鞘藻 (Microcoleus) | 0.1±0.1c | 1.3±0.4b | 3.8±1.0a | 1.5±0.2b | 0.3±0.1c | |
罗尔斯顿菌 (Ralstonia) | 38.0±5.5a | 6.6±0.4b | 3.3±0.5c | 1.6±0.8c | 1.5±0.1c | |
戴尔福特菌 (Delftia) | 7.4±0.8a | 6.5±0.4a | 2.4±0.3b | 1.7±0.4b | 0.4±0.1c | |
不动杆菌 (Acinetobacter) | 3.0±1.4a | 0.7±0.6b | 1.2±1.6ab | 1.3±0.1ab | 0.7±0.4b | |
Rubellimicrobium | 0.6±0.5a | 2.4±1.1a | 2.4±1.4a | 2.1±0.6a | 1.8±0.7ab | |
红色杆菌 (Rubrobacter) | 0.9±0.3b | 3.1±0.5a | 2.6±1.0a | 1.8±0.8ab | 2.3±1.1a |
门 | 含水量 | 全碳 | 有机碳 | 全氮 | 硝态氮 | 铵态氮 | 全磷 | pH |
---|---|---|---|---|---|---|---|---|
细菌群落 | 0.539** | 0.424* | 0.517* | 0.352* | 0.441* | 0.167 | 0.392* | 0.044 |
放线菌(Actinobacteria) | 0.521* | 0.329** | 0.550** | 0.525* | 0.332* | 0.045 | 0.368* | 0.394 |
酸杆菌(Acidobacteria) | 0.304 | 0.543* | 0.498* | 0.636* | 0.109* | 0.143 | 0.379 | 0.152* |
拟杆菌(Bacteroidetes) | 0.646** | 0.536* | 0.800* | 0.304 | 0.115* | 0.177 | 0.386 | -0.211 |
绿弯菌(Chloroflexi) | 0.296* | 0.436 | 0.369* | 0.500 | 0.209 | 0.246 | 0.761* | 0.143 |
蓝藻(Cyanobacteria) | 0.246 | 0.268 | 0.742 | 0.332 | 0.235* | 0.696* | 0.696 | 0.199 |
变形菌(Proteobacteria) | -0.246* | -0.443 | -0.634 | -0.593** | 0.321* | -0.234 | -0.864* | -0.322 |
厚壁菌(Firmicutes) | -0.654* | -0.150 | -0.391 | -0.336 | 0.177 | -0.028 | -0.293 | -0.252 |
芽单胞菌(Gemmatimonadetes) | 0.271 | 0.239 | 0.284 | 0.429 | 0.273 | 0.314 | 0.511 | 0.442 |
浮霉菌(Planctomycetes) | 0.364 | 0.486 | 0.336 | 0.686* | 0.353 | 0.102 | 0.868 | 0.032 |
Table 4 Correlations between soil environmental factors and bacterial communities in biological soil crusts
门 | 含水量 | 全碳 | 有机碳 | 全氮 | 硝态氮 | 铵态氮 | 全磷 | pH |
---|---|---|---|---|---|---|---|---|
细菌群落 | 0.539** | 0.424* | 0.517* | 0.352* | 0.441* | 0.167 | 0.392* | 0.044 |
放线菌(Actinobacteria) | 0.521* | 0.329** | 0.550** | 0.525* | 0.332* | 0.045 | 0.368* | 0.394 |
酸杆菌(Acidobacteria) | 0.304 | 0.543* | 0.498* | 0.636* | 0.109* | 0.143 | 0.379 | 0.152* |
拟杆菌(Bacteroidetes) | 0.646** | 0.536* | 0.800* | 0.304 | 0.115* | 0.177 | 0.386 | -0.211 |
绿弯菌(Chloroflexi) | 0.296* | 0.436 | 0.369* | 0.500 | 0.209 | 0.246 | 0.761* | 0.143 |
蓝藻(Cyanobacteria) | 0.246 | 0.268 | 0.742 | 0.332 | 0.235* | 0.696* | 0.696 | 0.199 |
变形菌(Proteobacteria) | -0.246* | -0.443 | -0.634 | -0.593** | 0.321* | -0.234 | -0.864* | -0.322 |
厚壁菌(Firmicutes) | -0.654* | -0.150 | -0.391 | -0.336 | 0.177 | -0.028 | -0.293 | -0.252 |
芽单胞菌(Gemmatimonadetes) | 0.271 | 0.239 | 0.284 | 0.429 | 0.273 | 0.314 | 0.511 | 0.442 |
浮霉菌(Planctomycetes) | 0.364 | 0.486 | 0.336 | 0.686* | 0.353 | 0.102 | 0.868 | 0.032 |
1 | 李新荣,张景光,王新平,等.干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J].植物学报,2000,42(9):965-970. |
2 | Liu L,Liu Y,Peng Z,et al.Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China[J].Biogeosciences,2017,14(16):1-25. |
3 | Belnap J.The world at your feet: desert biological soil crusts[J].Frontiers in Ecology & the Environment,2003,1(4):181-189. |
4 | 李新荣,谭会娟,回嵘,等.中国荒漠与沙地生物土壤结皮研究[J].科学通报,2018,63(23):16-30. |
5 | Faist A M,Herrick J E,Belnap J,et al.Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem[J].Ecosphere,2017,8(3):e01691. |
6 | Adessi A,Carvalho R C D,Philippis R D,et al.Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts[J].Soil Biology & Biochemistry,2018,116:67-69. |
7 | 都军,李宜轩,杨晓霞,等.腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响[J].中国沙漠,2018(1):111-116. |
8 | 肖巍强,董志宝,陈颢,等.生物土壤结皮对库布齐沙漠北缘土壤粒度特征的影响[J].中国沙漠,2017(5):970-977. |
9 | Jorge-Villar S,Edwards H.Microorganism response to stressed terrestrial environments: a raman spectroscopic perspective of extremophilic life strategies[J].Life Open Access Journal,2013,3(1):276-294. |
10 | Mager D M,Thomas A D.Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes[J].Journal of Arid Environments,2011,75(2):91-97. |
11 | Muñoz-Rojas M,Román J R,Roncero-Ramos B, et al.Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration[J].Science of the Total Environment,2018,636:1149-1154. |
12 | Elliott D R,Thomas A D,Hoon S R,et al.Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari[J].Biodiversity & Conservation,2014,23(7):1709-1733. |
13 | Yu J,Glazer N,Steinberger Y.Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert[J].Biology & Fertility of Soils,2014,50(2):285-293. |
14 | Liu L C,Liu Y B,Hui R,et al.Recovery of microbial community structure of biological soil crusts in successional stages of Shapotou desert revegetation, northwest China[J].Soil Biology & Biochemistry,2017,107:125-128. |
15 | Zhang B C,Zhou X B,Zhang Y M.Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J].Journal of Arid Land,2015,7(1):101-109. |
16 | Nagy M L,Alejandro P,Ferran G P.The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ)[J].Fems Microbiology Ecology,2010,54(2):233-245. |
17 | Abed R M M,Kharusi S A,Schramm A,et al.Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman[J].Fems Microbiology Ecology,2010,72(3):418-428. |
18 | Zhang B C,Kong W D,Wu N,et al.Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J].Journal of Basic Microbiology,2016,56(6):670-679. |
19 | Maier S,Schmidt T S B,Zheng L,et al.Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities[J].Biodiversity & Conservation,2014,23(7):1735-1755. |
20 | Gundlapally S R,Garciapichel F.The community and phylogenetic diversity of biological soil crusts in the colorado plateau studied by molecular fingerprinting and intensive cultivation[J].Microbial Ecology,2006,52(2):345-357. |
21 | Redfield E,Barns S M,Belnap J,et al.Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau [J].Fems Microbiology Ecology,2006,40(1):55-63. |
22 | Zhang Q Y,Wang Q,Ouyang H L,et al.Pyrosequencing reveals significant changes in microbial communities along the ecological succession of biological soil crusts in the Tengger desert of China[J].Pedosphere,2018,28(2):186-198. |
23 | 杨丽娜,赵允格,明姣,等.黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性[J].生态学报,2013,33(14):4416-4424. |
24 | Hagemann M,Henneberg M,Felde V J M N L,et al.Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel-effects of local conditions and disturbance[J].Fems Microbiology Ecology,2017,93(6):fiw228. |
25 | Zhang R F,Cui Z,Li S.Advance in methods for research on soil microbial community structure[J].Soils,2004,36(5):476-437. |
26 | Mueller R C,Belnap J,Kuske C R.Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland[J].Frontiers in Microbiology,2015,6:891. |
27 | 吴波.毛乌素沙地的景观动态与荒漠化成因研究[D].北京:中国科学院地理科学与资源研究所,1997. |
28 | 陈昌笃.走向宏观生态学:陈昌笃论文集[M].北京:科学出版社,2009. |
29 | 张军红,吴波.油蒿与臭柏沙地生物结皮对土壤理化性质的影响[J].东北林业大学学报,2012,40(3):58-61. |
30 | 郭爱莲,张卫兵,朱志诚,等.固沙植物臭柏的死亡原因及保护对策[J].水土保持通报,2002,22(2):16-18. |
31 | 北京大学地理系,中国科学院自然资源综合考察委员会,中国科学院兰州沙漠研究所,等.毛乌素沙区自然条件及其改良利用[M].北京:科学出版社,1983. |
32 | Wu B,Ci L J.Landscape change and desertification development in the Mu Us Sandland, Northern China[J].Journal of Arid Environments,2002,50(3):429-444. |
33 | 王林和,党宏忠,张国盛,等.中国天然臭柏群落的分布与生物量特征[J].内蒙古农业大学学报(自然科学版),2014(1):37-45. |
34 | Lawley B,Tannock G W.Analysis of 16S rRNA gene amplicon sequences using the QIIME software package[J].Methods in Molecular Biology,2017,1537:153. |
35 | 杨航宇,刘艳梅,王廷璞,等.生物土壤结皮对荒漠区土壤微生物数量和活性的影响[J].中国沙漠,2017,37(5):950-960. |
36 | Zhang B,Zhou X,Zhang Y.Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J].Journal of Arid Land,2015,7. |
37 | Xu X,Thornton P E,Post W M.A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology & Biogeography,2013,22(6):737-749. |
38 | Mogul R,Vaishampayan P,Bashir M,et al.Microbial community and biochemical dynamics of biological soil crusts across a gradient of surface coverage in the central Mojave Desert[J].Frontiers in Microbiology,2017,8:1974. |
39 | 李靖宇,张琇.腾格里沙漠不同生物土壤结皮微生物多样性分析[J].生态科学,2017,36(3):36-42. |
40 | Cameron W,Klaus S,Samiran B,et al.Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J].Nature Communications,2019,10:4841. |
41 | Zhang B C,Kong W,Wu N,et al.Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J].Journal of Basic Microbiology,2016,56(6):670-679. |
42 | Blaire S,Kuske C R,La Verne G G,et al.Climate change and physical disturbance manipulations result in distinct biological soil crust communities[J].Applied & Environmental Microbiology,2015,81(21):7448-7459. |
43 | Kuske C R,Yeager C M,Johnson S,et al.Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands[J].Isme Journal,2012,6(4):886-897. |
44 | Mandic-Mulec I,Stefanic P,van Elsas J D.Ecology of bacillaceae[J].Microbiol Spectrum,2015,3(2):TBS-0017-2013. |
45 | Maier S,Tamm A,Wu D,et al.Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts[J].Isme Journal,2018,12(4):1032-1046. |
46 | Pepe-Ranney C,Koechli C,Potrafka R,et al.Non-cyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation[J].Isme Journal,2016,10(2):287-298. |
47 | Maier S,Muggia L,Kuske C R,et al. Bacteria and non-lichenized fungi within biological soil crusts Biological soil crusts : an organizing principle in drylands[M]. Berlin, Germany:. Springer, 2016:81-100. |
48 | Lauber C L,Hamady M,Knight R,et al.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J].Applied & Environmental Microbiology,2009,75(15):5111. |
49 | Makhalanyane T P,Angel V,Eoin G,et al.Microbial ecology of hot desert edaphic systems[J].Fems Microbiology Reviews,2015,39(2):203-221. |
50 | Lee O O,Wang Y,Yang J,et al.Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea[J].Isme Journal,2011,5(4):650. |
51 | Belnap J,Lange O L.Biological Soil Crusts:Structure, Function, and Management[M].Berlin,Germany:Springer-Verlag,2002. |
52 | Couradeau E,Giraldo-Silva A,Martini F D,et al.Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus , and the formation of a nitrogen-fixing cyanosphere[J].Microbiome,2019,7(1):55. |
53 | Yeager C M,Kornosky J L,Morgan R E,et al.Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA[J].Fems Microbiology Ecology,2007,60(1):85-97. |
54 | Lan S,Li W,Zhang D,et al.Effects of drought and salt stresses on man-made cyanobacterial crusts[J].European Journal of Soil Biology,2010,46(6):381-386. |
55 | Pasternak Z,al ashhab A,Gatica J,et al.Spatial and temporal biogeography of soil microbial communities in arid and semiarid regions[J].PloS One,2013,8:e69705. |
56 | Dumbrell A J,Nelson M,Helgason T,et al.Relative roles of niche and neutral processes in structuring a soil microbial community[J].Isme Journal,2010,4(3):337-345. |
57 | Yao M,Rui J,Li J,et al.Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe[J].Soil Biology and Biochemistry,2014,79:81-90. |
[1] | Yahong Li, Chongfeng Bu, Qi Guo, Yingxin Wei. Ecological functions comparison of moss crust and algae crust in the Mu Us Sand Land [J]. Journal of Desert Research, 2021, 41(2): 138-144. |
[2] | Xiaobing Zhou, Bingchang Zhang, Yuanming Zhang. The theory and practices of biological soil crust rehabilitation [J]. Journal of Desert Research, 2021, 41(1): 164-173. |
[3] | Yang Zhao, Yanxia Pan, Jieqiong Su, Zhishan Zhang. Research status and development trend of green and environmental protection technologies on desertification land prevention in arid region of China [J]. Journal of Desert Research, 2021, 41(1): 195-202. |
[4] | Mingjing Xu, Lü Ping, Nan Xiao, Junhuai Yang, Zhengyao Liu, Miaoyan Feng, Zhun Liang. Effect of vegetation cover on dune migration in northwest Mu Us Sandy Land [J]. Journal of Desert Research, 2020, 40(4): 71-80. |
[5] | Zhao Yajiao, Liu Xiaojing, Wu Yong, Tong Changchun. Rhizosphere soil nutrients, enzyme activities and microbial community characteristics in legume-cereal intercropping system in Northwest China [J]. Journal of Desert Research, 2020, 40(3): 219-228. |
[6] | Zhang Rui, Zhou Xiaobing, Zhang Yuanming. Affects of Biological Soil Crusts on Litter Decomposition in the Gurbantunggut Desert [J]. Journal of Desert Research, 2019, 39(6): 151-158. |
[7] | Han Rui, Su Zhizhu, Li Xiang, Liu Miaomiao, Ma Yijuan. Holocene Climate Change Revealed by Grain Size and Magnetic Susceptibility in the Eastern Mu Us Sandy Land [J]. Journal of Desert Research, 2019, 39(2): 105-114. |
[8] | Pang Yingjun, Wu Bo, Jia Xiaohong, Shi Lin, Gaodabuxilatu, Li Shizhong. Characteristics of Wind Regime and Drift Potential in Mu Us Sandy Land [J]. Journal of Desert Research, 2019, 39(1): 62-67. |
[9] | Liu Zhenyu, Jin Heling, Liu Bing, Xue Wenping. Desert Evolution during the Mid Holocene Reflected by Grain-size Variation of Aeolian Sand and Paleosoil Sequence Records from Mu Us Sandy Land [J]. Journal of Desert Research, 2019, 39(1): 88-96. |
[10] | Yang Junhuai, Dong Zhibao, Nan Weige, Song Shaopeng, Xiao Nan, Liu Shengquan, Meng Xiaoqiang. Soil Grain-Size Characteristics under Pinus sylvestris var. mongolica in the Southeast Mu Us Sandy Land [J]. Journal of Desert Research, 2018, 38(4): 815-822. |
[11] | Chen Guoxiang, Dong Zhibao, Cui Xujia, Xiao Weiqiang, Li Lulu, Yang Junhuai, Shi Weikang. Composition and Micro-morphological Characteristics of Aeolian Sand in the Middle of the Mu Us Sandy Land [J]. Journal of Desert Research, 2018, 38(3): 473-483. |
[12] | Si Shouxia, Li Yixuan, Hui Rong, Liu Lichao, Xie Min, Wang Yanli. Effects of Snow on the Photosynthetic Physiological Characteristics of Biological Soil Crusts in A Desert Region [J]. Journal of Desert Research, 2018, 38(3): 560-567. |
[13] | Wu Yongsheng, Yin Ruiping, Tian Xiumin, Hasi. Development Characteristics of Biological Crusts under Artificial Vegetation in Southern Mu Us Sandy Land [J]. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 339-344. |
[14] | Du Jun, Li Yixuan, Yang Xiaoxia, Li Yunfei, Ma Xiaojun. Effects of Biological Soil Crusts Types on Soil Physicochemical Properties in the Southeast Fringe of the Tengger Desert [J]. JOURNAL OF DESERT RESEARCH, 2018, 38(1): 111-116. |
[15] | Yang Hangyu, Liu Yanmei, Wang Tingpu, Hui Rong. Effects of Biological Soil Crusts on the Amount and Activities of Soil Microbes in Desert Areas [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(5): 950-960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech