Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (3): 284-294.DOI: 10.7522/j.issn.1000-694X.2023.00015
Yaofang Shi1,2(), Xian Xue1,2(
), Quangang You1, Fei Peng1,2, Cuihua Huang1
Received:
2023-02-14
Revised:
2023-03-07
Online:
2023-05-20
Published:
2023-05-31
Contact:
Xian Xue
CLC Number:
Yaofang Shi, Xian Xue, Quangang You, Fei Peng, Cuihua Huang. Distribution characteristics of soil organic carbon and its relationship with soil physical properties in Ali Desert Area, Tibetan Plateau[J]. Journal of Desert Research, 2023, 43(3): 284-294.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00015
荒漠类型 | 样点 数 | 采样深度 /cm | 典型植被群系 | 植被盖度 /% |
---|---|---|---|---|
荒漠草原 | 9 | 0~100 | 沙生针茅(Stipa glareosa)、针茅-冷蒿(Stipa capillata-Artemisia frigida)、针茅-亚菊(Stipa capillata-Ajaniaachilleoides)、芨芨草-驼绒藜(Achnatherum splendens-C | 15~25 |
草原化灌木荒漠 | 10 | 0~100 | 刺叶柄棘豆(Oxtropis aciphylla)、矮禾草;四合木(Tetraena mongolica)、矮禾草;矮锦鸡儿(Caragana pygmaea)、矮禾草;细叶亚菊(Ajania tenuifolia)、矮禾草等 | 8~15 |
半灌木-矮半灌木荒漠 | 8 | 0~100 | 驼绒藜(C | 3~8 |
无植被区域 | 7 | 0~100 | 少见植被 | <3 |
Table 1 Basic information of sampling points
荒漠类型 | 样点 数 | 采样深度 /cm | 典型植被群系 | 植被盖度 /% |
---|---|---|---|---|
荒漠草原 | 9 | 0~100 | 沙生针茅(Stipa glareosa)、针茅-冷蒿(Stipa capillata-Artemisia frigida)、针茅-亚菊(Stipa capillata-Ajaniaachilleoides)、芨芨草-驼绒藜(Achnatherum splendens-C | 15~25 |
草原化灌木荒漠 | 10 | 0~100 | 刺叶柄棘豆(Oxtropis aciphylla)、矮禾草;四合木(Tetraena mongolica)、矮禾草;矮锦鸡儿(Caragana pygmaea)、矮禾草;细叶亚菊(Ajania tenuifolia)、矮禾草等 | 8~15 |
半灌木-矮半灌木荒漠 | 8 | 0~100 | 驼绒藜(C | 3~8 |
无植被区域 | 7 | 0~100 | 少见植被 | <3 |
指标 | 土层深度/cm | 最小值 | 最大值 | 平均数 | 标准差 | 变异系数 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|---|
SOC/(g?kg-1) | 0~20 | 0.26 | 13.15 | 5.28 | 3.27 | 0.62 | 0.85 | 1.01 |
20~40 | 0.36 | 10.84 | 3.84 | 1.99 | 0.52 | 0.71 | 0.40 | |
40~60 | 0.19 | 9.55 | 3.54 | 1.92 | 0.54 | 0.26 | -0.36 | |
60~80 | 0.40 | 7.55 | 3.23 | 1.65 | 0.51 | 0.23 | -0.28 | |
80~100 | 0.25 | 6.51 | 2.82 | 1.38 | 0.49 | 0.91 | -0.07 | |
SOCD/(kg?m-2) | 0~20 | 0.16 | 3.90 | 1.42 | 0.91 | 0.64 | 0.62 | 0.06 |
20~40 | 0.10 | 2.56 | 1.02 | 0.53 | 0.52 | 0.57 | -0.03 | |
40~60 | 0.00 | 2.44 | 0.96 | 0.53 | 0.55 | 0.34 | -0.35 | |
60~80 | 0.01 | 1.80 | 0.84 | 0.39 | 0.46 | 0.16 | -0.70 | |
80~100 | 0.01 | 1.68 | 0.67 | 0.26 | 0.39 | 0.50 | 0.30 |
Table 2 Descriptive statistics of SOC and SOCD at different soil depths in Ali Desert Area
指标 | 土层深度/cm | 最小值 | 最大值 | 平均数 | 标准差 | 变异系数 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|---|
SOC/(g?kg-1) | 0~20 | 0.26 | 13.15 | 5.28 | 3.27 | 0.62 | 0.85 | 1.01 |
20~40 | 0.36 | 10.84 | 3.84 | 1.99 | 0.52 | 0.71 | 0.40 | |
40~60 | 0.19 | 9.55 | 3.54 | 1.92 | 0.54 | 0.26 | -0.36 | |
60~80 | 0.40 | 7.55 | 3.23 | 1.65 | 0.51 | 0.23 | -0.28 | |
80~100 | 0.25 | 6.51 | 2.82 | 1.38 | 0.49 | 0.91 | -0.07 | |
SOCD/(kg?m-2) | 0~20 | 0.16 | 3.90 | 1.42 | 0.91 | 0.64 | 0.62 | 0.06 |
20~40 | 0.10 | 2.56 | 1.02 | 0.53 | 0.52 | 0.57 | -0.03 | |
40~60 | 0.00 | 2.44 | 0.96 | 0.53 | 0.55 | 0.34 | -0.35 | |
60~80 | 0.01 | 1.80 | 0.84 | 0.39 | 0.46 | 0.16 | -0.70 | |
80~100 | 0.01 | 1.68 | 0.67 | 0.26 | 0.39 | 0.50 | 0.30 |
指标 | 理论模型 | 块金值C0 | 基台值C+C0 | 块基比C0/(C+C0) | 步长 | 决定系数R2 | 残差RSS |
---|---|---|---|---|---|---|---|
SOC | 线性模型 | 0.23 | 0.26 | 0.88 | 12.33 | 0.10 | 0.00 |
SOCD | 线性模型 | 0.24 | 0.24 | 1.00 | 14.51 | 0.18 | 0.01 |
Table 3 Theoretical model and parameters of SOC and SOCD in 0-100 cm in Ali Desert Area
指标 | 理论模型 | 块金值C0 | 基台值C+C0 | 块基比C0/(C+C0) | 步长 | 决定系数R2 | 残差RSS |
---|---|---|---|---|---|---|---|
SOC | 线性模型 | 0.23 | 0.26 | 0.88 | 12.33 | 0.10 | 0.00 |
SOCD | 线性模型 | 0.24 | 0.24 | 1.00 | 14.51 | 0.18 | 0.01 |
荒漠类型 | 土层/cm | 容重/(g?cm-3) | 含水量/% | 砂粒/% | 粉粒/% | 黏粒/% |
---|---|---|---|---|---|---|
荒漠草原 | 0~20 | 1.34±0.15b | 11.42±1.96a | 19.21±0.21e | 77.21±0.09a | 3.57±0.11a |
20~40 | 1.39±0.15b | 7.43±0.36b | 23.53±1.25d | 73.26±1.17b | 3.20±0.09b | |
40~60 | 1.47±0.10ab | 5.54±0.53c | 29.30±0.28c | 68.01±0.07c | 2.68±0.22c | |
60~80 | 1.52±0.08ab | 4.01±0.22d | 35.64±3.76b | 62.58±3.48d | 1.76±0.29d | |
80~100 | 1.63±0.08a | 2.49±0.32e | 64.72±4.56a | 34.42±4.50e | 0.85±0.08e | |
草原化灌木荒漠 | 0~20 | 1.44±0.13b | 7.50±0.94a | 37.77±6.83d | 59.56±6.30a | 2.65±0.60a |
20~40 | 1.52±0.07ab | 6.10±0.08b | 56.72±3.09c | 41.67±2.98b | 1.60±0.11b | |
40~60 | 1.57±0.04ab | 4.29±0.35c | 63.84±0.05b | 34.86±0.03c | 1.29±0.02b | |
60~80 | 1.64±0.10a | 3.22±0.24d | 64.80±0.40b | 34.06±0.35c | 1.13±0.05bc | |
80~100 | 1.68±0.13a | 2.59±0.07d | 81.63±4.71a | 17.68±4.41d | 0.67±0.43c | |
半灌木-矮半灌木荒漠 | 0~20 | 1.47±0.10b | 1.95±0.20b | 78.52±1.52c | 20.75±1.43a | 0.26±0.20a |
20~40 | 1.49±0.08b | 2.60±0.82ab | 83.70±1.96c | 15.81±1.92b | 0.48±0.06a | |
40~60 | 1.55±0.11ab | 1.55±0.03c | 85.63±0.09b | 14.10±0.04b | 0.25±0.06a | |
60~80 | 1.58±0.12ab | 3.34±1.50a | 89.18±0.82b | 14.93±0.79c | 0.60±0.32a | |
80~100 | 1.67±0.05a | 0.62±0.21d | 92.75±1.79a | 10.66±1.66d | 1.18±2.24a | |
无植被区域 | 0~20 | 1.53±0.09b | 0.79±0.06c | 79.91±0.70d | 19.27±0.46a | 0.06±0.05c |
20~40 | 1.51±0.20b | 0.59±0.01d | 86.23±1.35c | 13.36±1.33b | 0.21±0.03c | |
40~60 | 1.62±0.09ab | 2.01±0.17b | 88.84±0.69b | 10.83±0.68c | 0.32±0.01b | |
60~80 | 1.67±0.06ab | 1.43±0.21a | 90.16±0.45b | 9.62±0.42c | 0.80±0.24a | |
80~100 | 1.77±0.08a | 0.41±0.02d | 93.05±1.31a | 6.87±1.28d | 0.39±0.02b |
Table 4 Soil physical properties in different soil depths of different deserts
荒漠类型 | 土层/cm | 容重/(g?cm-3) | 含水量/% | 砂粒/% | 粉粒/% | 黏粒/% |
---|---|---|---|---|---|---|
荒漠草原 | 0~20 | 1.34±0.15b | 11.42±1.96a | 19.21±0.21e | 77.21±0.09a | 3.57±0.11a |
20~40 | 1.39±0.15b | 7.43±0.36b | 23.53±1.25d | 73.26±1.17b | 3.20±0.09b | |
40~60 | 1.47±0.10ab | 5.54±0.53c | 29.30±0.28c | 68.01±0.07c | 2.68±0.22c | |
60~80 | 1.52±0.08ab | 4.01±0.22d | 35.64±3.76b | 62.58±3.48d | 1.76±0.29d | |
80~100 | 1.63±0.08a | 2.49±0.32e | 64.72±4.56a | 34.42±4.50e | 0.85±0.08e | |
草原化灌木荒漠 | 0~20 | 1.44±0.13b | 7.50±0.94a | 37.77±6.83d | 59.56±6.30a | 2.65±0.60a |
20~40 | 1.52±0.07ab | 6.10±0.08b | 56.72±3.09c | 41.67±2.98b | 1.60±0.11b | |
40~60 | 1.57±0.04ab | 4.29±0.35c | 63.84±0.05b | 34.86±0.03c | 1.29±0.02b | |
60~80 | 1.64±0.10a | 3.22±0.24d | 64.80±0.40b | 34.06±0.35c | 1.13±0.05bc | |
80~100 | 1.68±0.13a | 2.59±0.07d | 81.63±4.71a | 17.68±4.41d | 0.67±0.43c | |
半灌木-矮半灌木荒漠 | 0~20 | 1.47±0.10b | 1.95±0.20b | 78.52±1.52c | 20.75±1.43a | 0.26±0.20a |
20~40 | 1.49±0.08b | 2.60±0.82ab | 83.70±1.96c | 15.81±1.92b | 0.48±0.06a | |
40~60 | 1.55±0.11ab | 1.55±0.03c | 85.63±0.09b | 14.10±0.04b | 0.25±0.06a | |
60~80 | 1.58±0.12ab | 3.34±1.50a | 89.18±0.82b | 14.93±0.79c | 0.60±0.32a | |
80~100 | 1.67±0.05a | 0.62±0.21d | 92.75±1.79a | 10.66±1.66d | 1.18±2.24a | |
无植被区域 | 0~20 | 1.53±0.09b | 0.79±0.06c | 79.91±0.70d | 19.27±0.46a | 0.06±0.05c |
20~40 | 1.51±0.20b | 0.59±0.01d | 86.23±1.35c | 13.36±1.33b | 0.21±0.03c | |
40~60 | 1.62±0.09ab | 2.01±0.17b | 88.84±0.69b | 10.83±0.68c | 0.32±0.01b | |
60~80 | 1.67±0.06ab | 1.43±0.21a | 90.16±0.45b | 9.62±0.42c | 0.80±0.24a | |
80~100 | 1.77±0.08a | 0.41±0.02d | 93.05±1.31a | 6.87±1.28d | 0.39±0.02b |
1 | 周璞,侯华丽,张惠,等.碳中和背景下提升土壤碳汇能力的前景与实施建议[J].环境保护,2021,49(16):65-69. |
2 | Diffenbaugh, Noah S,Field,et al.Changes in ecologically critical terrestrial climate conditions[J].Science,2013,341(6145):486-492. |
3 | Eswaran H, Vanderberg E, Reich P.Organic-carbon in soils of the world[J].Soil Science Society of America Journal,1993,57(1):192-194. |
4 | Sundquist E T.The global carbon dioxide budget[J].Science,1993,259(5097):934-941. |
5 | 程磊磊,却晓娥,杨柳,等.中国荒漠生态系统:功能提升、服务增效[J].中国科学院院刊,2020,35(6):690-698. |
6 | Yao Y T, Li Z J, Wang T,et al.A new estimation of China's net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach[J].Agricultural and Forest Meteorology,2018,253:84-93. |
7 | Zhu X J, Yu G R, He H L,et al.Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China:results from upscaling network observations[J].Global and Planetary Change,2014,118:52-61. |
8 | Wang S, Xu L Y, Zhuang Q L,et al.Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China[J].Science of The Total Environment,2020,758(2):143644. |
9 | Liu R Y,Li, Wang Q X.Variations in water and CO2 fluxes over a saline desert in western China[J].Hydrological Processes,2011,26(4):513-522. |
10 | Jia X, Zha T S, Wu B,et al.Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J].Biogeoences,2014,11(3):57-70. |
11 | 杨元合,石岳,孙文娟,等.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J].中国科学:生命科学,2022,52(4):534-574. |
12 | Xie J, Zha T S, Jia X,et al.Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China[J].Journal of Arid Environments,2015,120(Sep.):33-41. |
13 | 李娜,王根绪,高永恒,等.青藏高原生态系统土壤有机碳研究进展[J].土壤,2009(4):512-519. |
14 | 田玉强,欧阳华,徐兴良,等.青藏高原土壤有机碳储量与密度分布[J].土壤学报,2008,45(5):933-942. |
15 | Piao S, Fang J, Ciais P,et al.The carbon balance of terrestrial ecosystems in China[J].Nature,2009,458:1009-1013. |
16 | He H, Wang S, Zhang L,et al.Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus[J].National Science Review,2019,6:505-514. |
17 | Fang J Y, Liu G H, Xu S L.Soil carbon pool in China and its global significance[J].Journal of Environmental Sciences,1996(2):249-254. |
18 | 王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义[J].冰川冻土,2002,24(6):693-700. |
19 | Zhao L, Wu X D, Wang Z W,et al.Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau[J].Scientific Reports,2018,8(1):3656. |
20 | Ding J Z, Wang T, Piao S L,et al.The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region[J].Nature Communications,2019,10(1):1-9. |
21 | 姚檀栋,王伟财,安宝晟,等.1949-2017年青藏高原科学考察研究历程[J].地理学报,2022,77(7):1586-1602. |
22 | 张晓平.西藏土壤环境背景值的研究[J].地理科学,1994(1):49-55. |
23 | 中国科学院青藏高原综合科学考察队.西藏土壤[M].北京:科学出版社,1988. |
24 | 中国科学院青藏高原综合科学考察队.西藏地形[M].北京:科学出版社,1988. |
25 | 中国科学院青藏高原综合科学考察队.西藏植被[M].北京:科学出版社,1988. |
26 | 张新时.中华人民共和国植被图(1∶1000000)[M].北京:地质出版社,2007. |
27 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005. |
28 | 张甘霖,龚子同.土壤调查实验室分析方法[M].北京:科学出版社,2011. |
29 | 焦翠翠,于贵瑞,陈智,等.基于遥感反演的1982-2015年中国北方温带和青藏高原高寒草地地上生物量空间数据集[J/OL].中国科学数据,2019,4(1). |
30 | Yang Y H, Mohammat A, Feng J Z,et al.Storage,patterns and environmental controls of soil organic carbon in China[J].Biogeochemistry,2007,84(2):131-141. |
31 | 邱巡巡,曹广超,张卓,等.高寒农田土壤有机碳和全氮密度垂直分布特征及其与海拔的关系[J].土壤通报,2022,53(3):623-630. |
32 | 徐华君,王文欣,王丹彤.中天山北坡垂直带土壤有机碳密度分布特征[J].水土保持研究,2015,22(5):35-38. |
33 | 杨帆,黄来明,李德成,等.高寒山区地形序列土壤有机碳和无机碳垂直分布特征及其影响因素[J].土壤学报,2015,52(6):1226-1236. |
34 | 刘淑娟,魏兴琥,郑倩倩,等.西藏阿里高寒荒漠区土壤有机碳含量特征[J].中国沙漠,2020,40(4):234-240. |
35 | 李超逸.阿里地区典型植被群落与土壤养分特征研究[D].拉萨:西藏大学,2021. |
36 | 张亚峰,姚振,马强,等.青藏高原北缘土壤碳库和碳汇潜力研究[J].地球科学进展,2018,33(2):206-212. |
37 | 田玉强,欧阳华,宋明华,等.青藏高原样带高寒生态系统土壤有机碳分布及其影响因子[J].浙江大学学报:农业与生命科学版,2007,33(4):443-449. |
38 | 王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544. |
39 | 解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699. |
40 | 刘慧霞,董乙强,崔雨萱,等.新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J].草业学报,2021,30(10):41-52. |
41 | 金月.内蒙古西阿拉善荒漠土壤有机碳空间格局[D].呼和浩特:内蒙古大学,2014. |
42 | Nie X Q, Yang L C, Li F,et al.Storage,patterns and controls of soil organic carbon in the alpine shrubland in the Three Rivers Source Region on the Qinghai-Tibetan Plateau[J].Catena,2019,178:154-162. |
43 | 罗亚勇,孟庆涛,张静辉,等.青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系[J].冰川冻土,2014,36(5):1298-1305. |
44 | Yang Y H, Fang J Z, Tang Y H,et al.Storage,patterns and controls of soil organic carbon in the Tibetan grasslands[J].Global Change Biology,2008,14(7):1592-1599. |
45 | Mu C, Zhang T, Wu Q,et al.Editorial: organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau[J].The Cryosphere,2015,9(2):479-486. |
46 | 王栋,吴晓东,魏献花,等.基于地理加权回归的青藏高原季节冻土区土壤有机碳空间分布研究[J].冰川冻土,2020,42(3):1036-1045. |
47 | 马蔷,金会军.气候变暖对多年冻土区土壤有机碳库的影响[J].冰川冻土,2020,42(1):91-103. |
48 | 王艺璇,仲秋维,郑昕雨,等.冻融循环对土壤性状特征影响研究进展[J].中国土壤与肥料,2022(10):231-240. |
49 | 马素辉,牟翠翠,郭红,等.祁连山黑河上游多年冻土区不同植被类型土壤有机碳密度分布特征[J].冰川冻土,2018,40(3):426-433. |
50 | 王娇月,宋长春,王宪伟,等.冻融作用对土壤有机碳库及微生物的影响研究进展[J].冰川冻土,2011,33(2):442-452. |
51 | 葛楠楠,石芸,杨宪龙,等.黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征[J].应用生态学报,2017,28(5):1626-1632. |
52 | 胡雷,王长庭,阿的鲁骥,等.高寒草甸植物根系生物量及有机碳含量与土壤机械组成的关系[J].西南民族大学学报(自然科学版),2015,41(1):6-11. |
[1] | Meilan Zhang, Zengtuan Cui, Zhiheng Dun, Ruihong Jia, Yuxia Zhang, Shiqian Guo, Qianyi Cui, Chenxuan Ge, Liqun Cai, Bo Dong. The Spatial-temporal variance characteristic of soil organic carbon in cultivited land of Gansu Province and its influencing factors in the 40 years from 1980 to 2020 [J]. Journal of Desert Research, 2022, 42(6): 295-303. |
[2] | XU Li-heng;WANG Ji-he;LI Yi;MA Quan-lin;ZHANG De-kui;LIU You-jun;CHEN Fang. Variations of Soil Physical Properties in Desertification Reversion Process at South Edge of Tengger Desert [J]. JOURNAL OF DESERT RESEARCH, 2008, 28(4): 690-695. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech