Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (2): 35-47.DOI: 10.7522/j.issn.1000-694X.2023.00100
Previous Articles Next Articles
Yuanshang Guo1,2(), Mingzhu He3, Jianbing Liu2, Xi Zhang2, Shoujiang Gu2, Wenjin Wu2, Libo Gao2, Xiaoli Feng2, Guojun Han1(
)
Received:
2023-05-29
Revised:
2023-07-13
Online:
2024-03-20
Published:
2024-03-19
Contact:
Guojun Han
CLC Number:
Yuanshang Guo, Mingzhu He, Jianbing Liu, Xi Zhang, Shoujiang Gu, Wenjin Wu, Libo Gao, Xiaoli Feng, Guojun Han. A comparative study of ecological remediation approaches in arid limestone mining remnants[J]. Journal of Desert Research, 2024, 44(2): 35-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00100
处理 | SiO2/% | Al2O3/% | TFe2O3/% | CaO/% | MgO/% | K2O/% | Na2O/% | 其他/% |
---|---|---|---|---|---|---|---|---|
砂+土(南边坡) | 29.94 | 6.94 | 3.25 | 22.05 | 7.46 | 1.66 | 0.21 | 28.49 |
砂+土(西边坡) | 31.94 | 6.71 | 2.79 | 23.93 | 5.07 | 1.41 | 0.27 | 27.88 |
砂+土(短穗柽柳) | 26.39 | 6.37 | 2.73 | 24.26 | 7.94 | 1.48 | 0.23 | 30.60 |
砂+土(蒙古莸) | 33.99 | 8.77 | 3.60 | 19.53 | 6.57 | 1.95 | 0.29 | 25.30 |
砂+土(四翅滨藜) | 15.75 | 3.03 | 1.74 | 30.42 | 10.54 | 0.64 | 0.15 | 37.73 |
砂+土(柠条) | 23.83 | 4.21 | 2.07 | 27.29 | 7.95 | 0.91 | 0.26 | 33.48 |
Table 1 Lithology of the study area
处理 | SiO2/% | Al2O3/% | TFe2O3/% | CaO/% | MgO/% | K2O/% | Na2O/% | 其他/% |
---|---|---|---|---|---|---|---|---|
砂+土(南边坡) | 29.94 | 6.94 | 3.25 | 22.05 | 7.46 | 1.66 | 0.21 | 28.49 |
砂+土(西边坡) | 31.94 | 6.71 | 2.79 | 23.93 | 5.07 | 1.41 | 0.27 | 27.88 |
砂+土(短穗柽柳) | 26.39 | 6.37 | 2.73 | 24.26 | 7.94 | 1.48 | 0.23 | 30.60 |
砂+土(蒙古莸) | 33.99 | 8.77 | 3.60 | 19.53 | 6.57 | 1.95 | 0.29 | 25.30 |
砂+土(四翅滨藜) | 15.75 | 3.03 | 1.74 | 30.42 | 10.54 | 0.64 | 0.15 | 37.73 |
砂+土(柠条) | 23.83 | 4.21 | 2.07 | 27.29 | 7.95 | 0.91 | 0.26 | 33.48 |
土壤基质 | 粒级 | 平均值±标准差/% | 土壤基质 | 粒级 | 平均值±标准差/% |
---|---|---|---|---|---|
砂+土 | 石砾 | 42.60±7.98a | 砂+土+有机肥 | 石砾 | 45.51±7.89a |
粗砂 | 21.60±4.42a | 粗砂 | 21.32±6.23a | ||
细砂 | 20.00±5.44a | 细砂 | 17.96±6.08a | ||
粉砂 | 15.17±2.53a | 粉砂 | 14.09±4.03ab | ||
黏粒 | 4.66±0.58a | 黏粒 | 4.34±1.07ab | ||
砂+土+复合肥 | 石砾 | 48.25±8.51a | 土+有机肥 | 石砾 | 42.83±6.70a |
粗砂 | 19.19±2.92a | 粗砂 | 20.86±3.64a | ||
细砂 | 20.52±7.39a | 细砂 | 20.02±3.52a | ||
粉砂 | 11.14±0.24b | 粉砂 | 15.16±2.27ab | ||
黏粒 | 3.06±0.93b | 黏粒 | 4.78±0.75a |
Table 2 Soil separate of the study area
土壤基质 | 粒级 | 平均值±标准差/% | 土壤基质 | 粒级 | 平均值±标准差/% |
---|---|---|---|---|---|
砂+土 | 石砾 | 42.60±7.98a | 砂+土+有机肥 | 石砾 | 45.51±7.89a |
粗砂 | 21.60±4.42a | 粗砂 | 21.32±6.23a | ||
细砂 | 20.00±5.44a | 细砂 | 17.96±6.08a | ||
粉砂 | 15.17±2.53a | 粉砂 | 14.09±4.03ab | ||
黏粒 | 4.66±0.58a | 黏粒 | 4.34±1.07ab | ||
砂+土+复合肥 | 石砾 | 48.25±8.51a | 土+有机肥 | 石砾 | 42.83±6.70a |
粗砂 | 19.19±2.92a | 粗砂 | 20.86±3.64a | ||
细砂 | 20.52±7.39a | 细砂 | 20.02±3.52a | ||
粉砂 | 11.14±0.24b | 粉砂 | 15.16±2.27ab | ||
黏粒 | 3.06±0.93b | 黏粒 | 4.78±0.75a |
差异源 | 平方和 | df | 均方 | F | P |
---|---|---|---|---|---|
植物 | 8.45 | 6 | 1.41 | 31.00 | <0.001 |
土壤基质改良 | 2.99 | 3 | 1.00 | 21.93 | <0.001 |
植物×土壤基质改良 | 6.83 | 15 | 0.46 | 10.02 | <0.001 |
Table 3 Two-way analysis of variance results of the effects of plant and soil matrix on soil organic matter
差异源 | 平方和 | df | 均方 | F | P |
---|---|---|---|---|---|
植物 | 8.45 | 6 | 1.41 | 31.00 | <0.001 |
土壤基质改良 | 2.99 | 3 | 1.00 | 21.93 | <0.001 |
植物×土壤基质改良 | 6.83 | 15 | 0.46 | 10.02 | <0.001 |
土壤 基质 | 植物 | 存活率/% | 土壤 基质 | 植物 | 存活率/% |
---|---|---|---|---|---|
砂+土 | 短穗柽柳 | 98.57 | 砂+土+ 有机肥 | 短穗柽柳 | 99.40 |
白刺 | 97.69 | 白刺 | 98.77 | ||
沙拐枣 | 96.09 | 沙拐枣 | 96.03 | ||
蒙古莸 | 93.98 | 柠条锦鸡儿 | 92.73 | ||
花棒 | 84.82 | 花棒 | 87.78 | ||
柠条锦鸡儿 | 84.35 | 蒙古莸 | 82.01 | ||
四翅滨藜 | 63.39 | 四翅滨藜 | 71.43 | ||
砂+土+ 复合肥 | 白刺 | 97.73 | 土+ 有机肥 | 白刺 | 100.00 |
短穗柽柳 | 96.46 | 沙拐枣 | 99.11 | ||
沙拐枣 | 95.81 | 短穗柽柳 | 98.30 | ||
柠条锦鸡儿 | 92.52 | 柠条锦鸡儿 | 94.62 | ||
蒙古莸 | 86.55 | 蒙古莸 | 89.23 | ||
花棒 | 84.62 | 花棒 | 79.52 | ||
四翅滨藜 | 68.37 | 四翅滨藜 | 75.68 |
Table 4 Plant survival rate
土壤 基质 | 植物 | 存活率/% | 土壤 基质 | 植物 | 存活率/% |
---|---|---|---|---|---|
砂+土 | 短穗柽柳 | 98.57 | 砂+土+ 有机肥 | 短穗柽柳 | 99.40 |
白刺 | 97.69 | 白刺 | 98.77 | ||
沙拐枣 | 96.09 | 沙拐枣 | 96.03 | ||
蒙古莸 | 93.98 | 柠条锦鸡儿 | 92.73 | ||
花棒 | 84.82 | 花棒 | 87.78 | ||
柠条锦鸡儿 | 84.35 | 蒙古莸 | 82.01 | ||
四翅滨藜 | 63.39 | 四翅滨藜 | 71.43 | ||
砂+土+ 复合肥 | 白刺 | 97.73 | 土+ 有机肥 | 白刺 | 100.00 |
短穗柽柳 | 96.46 | 沙拐枣 | 99.11 | ||
沙拐枣 | 95.81 | 短穗柽柳 | 98.30 | ||
柠条锦鸡儿 | 92.52 | 柠条锦鸡儿 | 94.62 | ||
蒙古莸 | 86.55 | 蒙古莸 | 89.23 | ||
花棒 | 84.62 | 花棒 | 79.52 | ||
四翅滨藜 | 68.37 | 四翅滨藜 | 75.68 |
序号 | 土壤有机质 /(g·kg-1) | 存活率 /% | RGRs /(mm·cm-1·month-1) |
---|---|---|---|
第Ⅰ类 | 1.27±0.33b | 95±6a | 1.26±0.04b |
第Ⅱ类 | 1.14±0.13bc | 74±8b | 1.45±0.08a |
第Ⅲ类 | 0.88±0.21c | 91±6a | 1.51±0.04a |
第Ⅳ类 | 2.53±0.04a | 98±2a | 1.25±0.07b |
Table 5 Indicators of different groups
序号 | 土壤有机质 /(g·kg-1) | 存活率 /% | RGRs /(mm·cm-1·month-1) |
---|---|---|---|
第Ⅰ类 | 1.27±0.33b | 95±6a | 1.26±0.04b |
第Ⅱ类 | 1.14±0.13bc | 74±8b | 1.45±0.08a |
第Ⅲ类 | 0.88±0.21c | 91±6a | 1.51±0.04a |
第Ⅳ类 | 2.53±0.04a | 98±2a | 1.25±0.07b |
1 | 农仕华,韦佳伟,蒙颖森.石灰岩矿床不同资源储量估算方法对比分析[J].西部探矿工程,2022,34(9):120-122. |
2 | Li J G, Li Z X, Brandis K J,et al.Tracing geochemical pollutants in stream water and soil from mining activity in an alpine catchment[J].Chemosphere,2020,242:125167. |
3 | Shi J, Du P, Luo H L,et al.Soil contamination with cadmium and potential risk around various mines in China during 2000-2020[J].Journal of Environmental Management,2022,310:114509. |
4 | Nguyen T H, Won S, Ha M G,et al.Bioleaching for environmental remediation of toxic metals and metalloids:a review on soils,sediments,and mine tailings[J].Chemosphere,2021,282:131108. |
5 | Xu Q, Xia G Z, Wei Y,et al.Responses of vegetation and soil to artificial restoration measures in abandoned gold mining areas in altai mountain,northwest China[J].Diversity-Basel,2022,14(6):427. |
6 | Wang C X, Liu X, Wu J C,et al.Planning a water-constrained ecological restoration pattern to enhance sustainable landscape management in drylands[J].Journal of Environmental Management,2023,335:117514. |
7 | Bai D S, Yang X, Lai J L,et al.In situ restoration of soil ecological function in a coal gangue reclamation area after 10 years of elm/poplar phytoremediation[J].Journal of Environmental Management,2022,305:114400. |
8 | Shi Y F, Zang Y F, Yang H H,et al.Biochar enhanced phytostabilization of heavy metal contaminated mine tailings:a review[J].Frontiers in Environmental Science,2022,10:1044921. |
9 | Liu J, Zhang S W, Li E W,et al.Effects of cubic ecological restoration of mining wasteland and the preferred restoration scheme[J].Science of the Total Environment,2022,851(1):158155. |
10 | Gairola S U, Bahuguna R, Bhatt S S.Native plant species:a tool for restoration of mined lands[J].Journal of Soil Science and Plant Nutrition,2023,23(2):1438-1448. |
11 | Laffont-Schwob I, Rabier J, Masotti V,et al.Functional Trait-Based screening of Zn-Pb tolerant wild plant species at an abandoned mine site in Gard (France) for rehabilitation of mediterranean Metal-Contaminated soils[J].International Journal of Environmental Research and Public Health,2020,17(15):5506. |
12 | 何明珠,胡天光,程斌让,等.干旱区尾矿污染环境的植物修复技术研究进展[J].中国沙漠,2014,34(5):1329-1336. |
13 | Konig L A, Medina-Vega J A, Longo R M,et al.Restoration success in former Amazonian mines is driven by soil amendment and forest proximity[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2023,378(1867):20210086. |
14 | Bateman A M, Erickson T E, Merritt D J,et al.Native plant diversity is a stronger driver for soil quality than inorganic amendments in semi-arid post-mining rehabilitation[J].Geoderma,2021,394:115001. |
15 | Qian L, Lin H, Li B,et al.Physicochemical characteristics and microbial communities of rhizosphere in complex amendment-assisted soilless revegetation of gold mine tailings[J].Chemosphere,2023,320:138052. |
16 | Wang X Y, Li Y, Wei Y,et al.Effects of fertilization and reclamation time on soil bacterial communities in coal mining subsidence areas[J].Science of the Total Environment,2020,739:139882. |
17 | Ginocchio R, de la Fuente L M, Orrego F,et al.A novel fast-vegetative propagation technique of the pioneer shrub Baccharis linearis on mine tailings by adding compost[J].International Journal of Phytoremediation,2021,23(11):1169-1174. |
18 | Hussain Z, Alam M, Khan M A,et al.Bioaccumulation of potentially toxic elements in spinach grown on contaminated soils amended with organic fertilizers and their subsequent human health risk[J].Arabian Journal of Geosciences,2020,13(18):945. |
19 | Wang L L, Wang F, Wang S F,et al.Analysis of differences in chemical properties of reconstructed soil under different proportions of topsoil substitute materials[J].Environmental Science and Pollution Research,2021,28(24):31230-31245. |
20 | Zhu Q, Hu Z Q, Liu X R,et al.Topsoil alternatives selection for surface coal-mined land reclamation in Inner Mongolia,China:an experimental study[J].International Journal of Mining Reclamation and Environment,2021,35(6):421-434. |
21 | Lebrun M, Nandillon R, Miard F S,et al.Application of amendments for the phytoremediation of a former mine technosol by endemic pioneer species:alder and birch seedlings[J].Environmental Geochemistry and Health,2021,43(1):77-89. |
22 | Pérez R, Tapia Y, Antilén M,et al.Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings[J].Ecotoxicology and Environmental Safety,2021,208:111495. |
23 | Peco J D, Higueras P, Campos J A,et al.Abandoned mine lands reclamation by plant remediation technologies[J].Sustainability,2021,13(12):6555. |
24 | 武万里,程雅茹,马宁.宁夏高速公路横风分布特征及风险分析[J/OL].宁夏大学学报(自然科学版):1-6[2023-05-03].. |
25 | 张泽瑾,李晓攀,杨苑,等.中卫市沙尘污染天气分型及气象条件特征分析[J].农业科技与信息,2022(5):40-44. |
26 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000. |
27 | Mau V, Arye G, Gross A.Poultry litter hydrochar as an amendment for sandy soils[J].Journal of Environmental Management,2020,271:110959. |
28 | Shan Y Y, Li G, Bai Y G,et al.Effects of different improvement measures on hydrothermal carbon and cotton (Gossypium hirsutum L.) yield in saline-alkali soil[J].Applied Ecology and Environmental Research,2022,20(2):1821-1835. |
29 | Zhang Y, Zhang M J, Qu D Y,et al.Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau:evidence from delta H-2 offset correction[J].Journal of Arid Land,2022,14(6):653-672. |
30 | Ebmeyer H, Hoffmann C.Water use efficiency of sugar beet genotypes:a relationship between growth rates and water consumption[J].Journal of Agronomy and Crop Science,2022,208(1):28-39. |
31 | 付鹏程,胡广录,巩炜,等.河西走廊沙漠-绿洲过渡带固沙植物根区土壤物理性质及持水特性[J].土壤通报,2021,52(4):811-820. |
32 | Luo Z T, Niu J Z, He S Q,et al.Linking roots,preferential flow,and soil moisture redistribution in deciduous and coniferous forest soils[J].Journal of Soils and Sediments,2023,23(3):1524-1538. |
33 | Ma X F, Zhu J T, Wang Y,et al.Variations in water use strategies of sand-binding vegetation along a precipitation gradient in sandy regions,northern China[J].Journal of Hydrology,2021,600:126539. |
34 | Yakupoglu G, Saltali K, Rodrigo-Comino J,et al.Manure effect on Soil-Plant interactions in capia pepper crops under semiarid climate conditions[J].Sustainability,2022,14(20):13695. |
35 | He M Z, Ji X B, Bu D S,et al.Cultivation effects on soil texture and fertility in an arid desert region of northwestern China[J].Journal of Arid Land,2020,12(4):701-715. |
36 | 王玉珍,黄晓,蔡丽平,等.不同温度条件下土壤颗粒组成对宽叶雀稗种子发芽与幼苗生长的影响[J].草业学报,2018,27(9):45-55. |
37 | 马赟花,冯图,李仰征,等.沙棘(Hippophae rhamnoides)对经客土改良石漠化土壤的适应性[J].中国沙漠,2021,41(1):228-233. |
38 | 李端,司建华,李继彦,等.胡杨(Populus euphratica)对盐胁迫和干旱胁迫的生理响应特征[J].中国沙漠,2023,43(2):205-215. |
39 | 王雨,刘振婷,高广磊,等.干旱胁迫下枯草芽孢杆菌(Bacillus subtilis)对柠条(Caragana korshinskii)和沙冬青(Ammopiptanthus mongolicus)种子萌发及幼苗生长的影响[J].中国沙漠,2022,42(5):73-81. |
40 | Hayyat M U, Siddiq Z, Mahmood R,et al.Limestone quarry waste promotes the growth of two native woody angiosperms[J].Frontiers in Ecology and Evolution,2021,9:637833. |
41 | Heiskanen J, Ruhanen H, Hagner M.Effects of compost,biochar and ash mixed in till soil cover of mine tailings on plant growth and bioaccumulation of elements:a growing test in a greenhouse[J].Heliyon,2022,8(2):e08838. |
42 | 鲁艳,李新荣,何明珠,等.重金属对盐生草光合生理生长特性的影响[J].西北植物学报,2011,31(2):370-376. |
43 | 徐慧全,王立,冯宜明,等.重金属在不同温度和光照下对骆驼蓬种子萌发特征的影响[J].水土保持通报,2012,32(1):33-37. |
44 | Long L L, Liu Y, Chen X Y,et al.Analysis of spatial variability and influencing factors of soil nutrients in western China:a case study of the Daliuta mining area[J].Sustainability,2022,14(5):2793. |
45 | 李圆宾,李鹏,王舒华,等.稻麦轮作体系下有机肥施用对作物产量和土壤性质影响的整合分析[J].应用生态学报,2021,32(9):3231-3239. |
46 | Chen Y H, Zhang S Y, Du S F,et al.Analysis of amino acids in the roots of Tamarix ramosissima by application of exogenous potassium (K+) under NaCl stress[J].International Journal of Molecular Sciences,2022,23(16):9331. |
47 | Hu J, Hu X K, Duan H R,et al.Na+ and K+ homeostasis is important for salinity and drought tolerance of calligonum mongolicum[J].Pakistan Journal of Botany,2021,53(6):1927-1934. |
48 | 何明珠,王辉,陈智平.荒漠植物持水力研究[J].中国沙漠,2006,26(3):403-408. |
49 | Li Z K, Gong X W, Wang J L,et al.Foliar water uptake improves branch water potential and photosynthetic capacity in Calligonum mongolicum [J].Ecological Indicators,2023,146:109825. |
50 | Li J, Hu S J, Sheng Y,et al.Whole-plant water use and hydraulics of Populus euphratica and Tamarix ramosissima seedlings in adaption to groundwater variation[J].Water,2022,14(12):1869. |
51 | Cui Y Q, Niu L Q, Xiang J L,et al.Water uptake from different soil depths for desert plants in saline lands of Dunhuang,NW China[J].Frontiers in Environmental Science,2021,8:585464. |
[1] | Zhongqi Lu, Zhujun Zhao, Qing He. Concentrations characteristics and sources of particulate matter in Korla, Xinjiang, China [J]. Journal of Desert Research, 2022, 42(6): 74-84. |
[2] | Hanlin Li, Qing He, Quanwei Zhao. Transport pathways and potential source regions of PM10 in Kashgar, Xinjiang, China [J]. Journal of Desert Research, 2021, 41(5): 62-70. |
[3] | Li Huixia, Zhou Hongyi, Wei Xinghu. Analysis of the Impact of Human Disturbance on Vegetation Based on RUE and NDVI:a case study in Northwest Guangxi, China [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(3): 927-937. |
[4] | An Shuai, Wang Naiang, Chen Huili, Zhao Liqiang. The Lakes’ Clustering of the Badain Jaran Desert Based on SOFM Network and Inferences of Their Sources of Groundwater Recharge [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(2): 574-581. |
[5] | LI Lei1,2,3, LI Xiang-yi1,3, XU Xin-wen1, LIN Li-sha1,3, ZENG Fan-jiang1,3, CHEN Feng-li1,2. Comparison on the Fluorescence Parameters of 21 Leguminosae Pasture Species in the Cele Oasis [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(5): 1363-1370. |
[6] | HAN Xi1, WEI Wen-shou1, LIU Ming-zhe2,3, HONG Wen2,4, LU Heng2,4, ZHANG Yan-wei2,4. The Influences of Airflow on the Concentrations of PM10, PM2.5 and PM1.0 in Urumqi, Xinjiang, China [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(1): 223-230. |
[7] | JIANG Da-hai;WANG Shi-gong;SHANG Ke-zheng. Quantitative Assessment of Sandstorm Risk [J]. JOURNAL OF DESERT RESEARCH, 2011, 31(6): 1554-1562. |
[8] | ZHUANG Guang xing;CUI Cai xai;ZHAO Yuan mao;et al.. Simulation on Air Flow 3-Dimension Trajectories of the Boundary Layer at Akerdala Background Atmosphere Station [J]. JOURNAL OF DESERT RESEARCH, 2008, 28(1): 154-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech