Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2012, Vol. 32 Issue (5): 1216-1223    DOI:
Desert and Desertification     
Wind Speed Change within the Shelter Forest along the Taklimakan Desert Highway
WANG Yan-zai1,2,3, WEI Dian-sheng1,3, WU Yong-qiu1,3, CHENG Hong1,3, ZHANG Chun-lai1,3, DONG Yi-fan1,3, PAN Mei-hui1,3, ZHANG Hong-yan1,3, XU Xing-ri1,3
1.State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China;
2.Geography and Tourism College, Chongqing Normal University, Chongqing 400047, China;
3.MOE Engineering Center of Desertification and Blown-sand Control, Beijing Normal University, Beijing 100875, China
Download:  PDF (4600KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Taklimakan Desert Highway is the longest highway crossing a drift sand region in the world. The blown sand prevention and control engineering system is a key factor determining whether the highway can operate smoothly. Based on topography measurement, engineering measurement survey and air flow field observation within the shelter forest along the Taklimakan Desert Highway in the dune area, this paper studied the characteristics of wind speed change at different sand dune positions within the shelter forest, and analyzed the blown sand prevention and control efficiency of the shelter forest. Main results include: (1) There are three regions for the wind velocity change within the shelter forest along the section perpendicular to the road: area of wind velocity quickly reducing in front of the shelter forest, area of minimum wind velocity in the middle of the shelter forest, and area of wind velocity respeeding up behind shelter forest. The increasing tendency of wind velocity on the road surface would help to protect the highway from sand disaster. (2) The shelter forest is efficient in preventing sand disaster with more than 80% reduction of wind velocity in the middle of the shelter forest compared to the wind velocity in front of the shelter forest. Wind velocity can be reduced to the minimum when the distance from the edge of the shelter forest surpasses the distance of 10 times height of the forest. (3) There is a notable difference in protective efficiency of the shelter forest at different geomorphologic positions, and the best protective efficiency is present at the bottom of windward slope of sand dunes, the worst at the middle position of the windward slop of sand dunes.
Key words:  Taklimakan Desert Highway      longitudinal dune      road shelterbelt      wind field     
Received:  12 January 2012      Published:  20 September 2012
ZTFLH: 

P425.62

 

Cite this article: 

WANG Yan-zai, WEI Dian-sheng, WU Yong-qiu, CHENG Hong, ZHANG Chun-lai, DONG Yi-fan, PAN Mei-hui, ZHANG Hong-yan, XU Xing-ri. Wind Speed Change within the Shelter Forest along the Taklimakan Desert Highway. JOURNAL OF DESERT RESEARCH, 2012, 32(5): 1216-1223.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2012/V32/I5/1216

[1]《联合国防治荒漠化公约》中国执委会秘书处.中国履行《联合国防治荒漠化公约》国家报告[R].《联合国防治荒漠化公约》中国执委会秘书处,2006:4.

[2]吴正,丛自立,洪占三.公路沙埋的工程防治[M]//中国科学院兰州沙漠研究所集刊第2号.1982:49-61.

[3]刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995.

[4]王训明,陈广庭,韩致文,等.塔里木沙漠公路沿线机械防沙体系效益分析[J].中国沙漠,1999,19(2):120-128.

[5]罗万银,董治宝,钱广强.栅栏最佳疏透度的空气动力学评价[J].中国沙漠,2009,29(4):583-588.

[6]罗万银,董治宝,钱广强,等.栅栏绕流减速效应风洞实验模拟[J].中国沙漠,2010,30(1):1-7.

[7]王元,周军莉,徐忠.灌草与林带搭配条件下防护效应的数值模拟[J].应用生态学报,2003,14(3):359-362.

[8]牛清河,屈建军,张克存,等.青藏铁路典型路段风沙灾害现状与机械防沙效益估算[J].中国沙漠,2009,29(4):596-604.

[9]汪言在,伍永秋,苟诗薇.塔克拉玛干沙漠中部地区两类半隐蔽格状沙障内部沉积粒度特征浅析[J].中国沙漠,2009,29(6):1056-1063.

[10]赵晓彬,党兵,符亚儒,等.半干旱区沙地高速公路防风固沙林营造技术及其效益研究[J].中国沙漠,2010,30(6):1247-1256.

[11]邹本功,丛自立,刘世建.沙坡头地区风沙流的基本特征及其防治效果的初步观测[J].中国沙漠,1981,1(1):33-39.

[12]李生宇.塔里木沙漠公路的风沙环境效果研究[D].中国科学院研究生院博士学位论文,2005.

[13]杨文斌,赵爱国,王晶莹,等.低覆盖度沙蒿群丛的水平配置结构与防风固沙效果研究[J].中国沙漠,2006,26(1):108-123.

[14]张春来,邹学勇,程宏,等.包兰铁路沙坡头段防护体系近地面流场特征[J].应用基础与工程科学学报,2006,14(3):353-341.

[15]王雪芹,黄强,雷加强.塔里木沙漠公路在复合型纵向沙垄区的道路沙害[J].干旱区研究,1998,15(3):48-51.

[16]孙艳伟,李生宇,徐新文,等.塔里木沙漠高大复合纵向沙垄区路面沙害情势的变化特征[J].干旱区地理,2009,32(3):327-334.

[17]金昌宁.塔克拉玛干沙漠流动沙丘分布区公路修筑及沙害防治研究[D].兰州大学研究生学位论文,2006.

[18]李生宇,雷加强,徐新文,等.塔里木沙漠公路影响下的地表形态变化[J].科学通报,2006,51: 81-87.

[19]王训明,陈广庭,韩致文,等.塔里木沙漠公路沿线的起沙风与输沙强度[J].中国沙漠,1997,17(2):168-172.

[20]李振山,陈广庭.塔克拉玛干沙漠起沙风况[J].中国沙漠,1999,19(1):43-45.

[21]俎瑞平,张克存,屈建军,等.塔克拉玛干沙漠地面风场特征及周边地区沙丘排列关系分析[J].应用气象学报,2005,16(4):468-475.

[22]吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003.

[23]Wiggs G F S,Livingstone I,Thomas D S G,et al.Airflow and roughness characteristics over partially vegetated linear dunes in the southwest Kalahari desert[J].Earth Surface Processes and Landforms,1996,21:19-34.

[24]刘树华.植被内部的风速分布规律和湍流交换特征[J].气象,1990,16(3):8-12.

[25]Cleugh H A.Effect of windbreaks on airflow microclimates and crop yields[J].Agroforestry Systems,1998,41:55-84.

[26]王训明.若干典型沙丘形态动力学过程研究——以塔克拉玛干沙漠为例[D].中国科学院博士学位论文,2001.

[27]王德,雷加强,徐俊荣,等.塔中一号公路防沙体系不同地貌部位风沙危害差异研究[J].干旱区资源与环境,2004,18(5):29-33.

[28]Coceal O,Belcher S E. A canopy model for mean winds through urban areas[J].Quarterly Journal of the Royal Meteorological Society,2004,130:1349-1372.

[29]Dupont S,Brunet Y. Coherent structures in canopy edge flow:A large-eddy simulation study[J].Journal of Fluid Mechanics,2009,630:93-128.

[30]张家武,陈广庭,陈发虎,等.塔克拉玛干沙漠中部地区线形沙丘表面动力学过程[J].中国沙漠,1999,19(2):128-134.
No Suggested Reading articles found!