Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2012, Vol. 32 Issue (5): 1472-1478    DOI:
Ecology and Economics     
Analysis of Vegetation Landscape Pattern Dynamics Based on Trajectory Change Detection:
A case study of ecological water transportation in the lower reaches of Tarim River
LIU Gui-lin1,2,3, Alishir Kurban1,2, Umut Halik4, DUAN Han-ming5, Philipp Gartner6, Birgit Kleinschmit6, Abdimijit Ablekim1, NIU Ting1,2
1.Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
3.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008,China;
4.College of Resource and Environment Sciences/Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China;
5.College of Land and Resources, China West Normal University, Nanchong 637002, Sichuan, China;
6.Institute for Landscape Architecture and Environmental Planning, Technical University of Berlin, Berlin 10623, Germany
Download:  PDF (3427KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on remote sensing and GIS technology, vegetation/non-vegetation in the lower reaches of Tarim River were classified from Landsat-5/TM images (2006, 2007, 2009, 2010) and CBERS/CCD images (2008). Five kinds of vegetation change trajectories (stable vegetation, stable non-vegetation, changing into vegetation, changing into non-vegetation, unstable change) were subsequently categorized from different temporal trends of vegetation change. Then landscape patterns of vegetation change trajectories for 5 years from 2006 to 2010 were analyzed with software FRAGSTATS 3.3 from aspects of three landscape indices: Percentage of Landscape(PLAND), Interspersion and Juxtaposition (IJI), Area-Weighted Mean Fractal Dimension Index (FARC_AM). Results showed that vegetation area decreased because the survival rate of vegetation seedlings decreased caused by reduced ecological water transportation volume and prolonged ecological water transportation interval. PLAND of stable non-vegetation was the largest, which indicated that non-vegetation was the major landscape class in the study area. IJI of changing into vegetation and unstable change trajectories were relatively higher than IJI of others, which showed that they were highly sensitive to water condition and responded strongly to the volume and allocation of ecological water transportation. The shapes of five change trajectories were all relatively regular with lower FRAC_AM values.
Key words:  vegetation landscape pattern      change trajectory      ecological water transportation      the lower reaches of Tarim River     
Received:  06 January 2012      Published:  20 September 2012
ZTFLH: 

X171

 

Cite this article: 

LIU Gui-lin, Alishir Kurban, Umut Halik, DUAN Han-ming, Philipp Gartner, Birgit Kleinschmit, Abdimijit Ablekim, NIU Ting. Analysis of Vegetation Landscape Pattern Dynamics Based on Trajectory Change Detection:
A case study of ecological water transportation in the lower reaches of Tarim River. JOURNAL OF DESERT RESEARCH, 2012, 32(5): 1472-1478.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2012/V32/I5/1472

[1]韩贵锋,徐建华.上海城市植被变化轨迹及其成因分析[J].生态学报,2009,29(4):1793-1803.

[2]朴世龙,方精云.最近18年来中国植被覆盖的动态变化[J].第四纪研究,2001,21(4):294-302.

[3]刘明,王克林.洞庭湖流域中上游地区景观格局变化及其驱动力[J].应用生态学报,2008,19(6):1317-1324.

[4]敖艳红,裴浩,王永利,等.浑善达克沙地遥感监测研究[J].中国沙漠,2010,30(1):33-39.

[5]吴晓旭,邹学勇.基于3S的毛乌素沙地腹地景观格局演变及其驱动力分析——以内蒙古乌审旗为例[J].中国沙漠,2010,30(4):763-769.

[6]谢霞,王宏卫,塔西普拉提·特依拜.基于RS和GIS的艾比湖区域景观格局动态变化研究[J].中国沙漠,2010,30(5):1166-1173.

[7]贺凌云,海米提·依米提,瓦哈甫·哈立克,等.新疆于田景观特征变化的遥感分析[J].中国沙漠,2010:30(5):1027-1030.

[8]罗格平,周成虎,陈曦.从景观格局分析认为驱动的绿洲时空变化——以天山北坡三工河流域绿洲为例[J].生态学报,2005,25(9):2197-2205.

[9]Coppin P,Jonckheere I,Nackaerts K,et al.Digital change detection methods in ecosystem monitoring:A review[J].International Journal of Remote Sensing,2004,25(9):1565-1596.

[10]Lu D,Mausel P,Brondízio E,et al.Change detection techniques[J].International Journal of Remote Sensing,2004,25(12):2365-2407.

[11]Lambin E F.Modeling and monitoring land-cover change processes in tropical regions [J].Progress in Physical Geography,1997,21(3):375-393.

[12]Kuemmerle T,Chaskovskyy O,Knorn J,et al.Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007[J].Remote Sensing of Environment,2009,113:1194-1207.

[13]Zhou Q,Li B,Kurban A.Trajectory analysis of land cover change in arid environment of China[J].International Journal of Remote Sensing,2008,29(4):1093-1107.

[14]Zhou Q,Li B,Kurban A.Spatial pattern analysis of land cover change trajectories in Tarim Basin,northwest China[J].International Journal of Remote Sensing,2008,29(19):5495-5509.

[15]段含明,艾里西尔·库尔班,玉米提·哈力克,等.基于多时相CBERS/CCD数据的塔里木河下游植被变化[J].干旱区地理,2010,33(2):263-271.

[16]宋郁东,樊自立,雷志栋,等.中国塔里木河水资源与水生态问题研究[M].乌鲁木齐:新疆人民出版社,2000:186-188,395-400.

[17]陈亚宁,张小雷,祝向民,等.新疆塔里木河下游断流河道输水的生态效应分析[J].中国科学(D辑),2004,34(5):475-482.

[18]闫正龙,汤国安.塔里木河下游生态应急输水植被恢复的遥感监测[J].水土保持通报,2004,25(3):58-60.

[19]杨戈,郭永平.塔里木河下游末端实施生态输水后植被变化与展望[J].中国沙漠,2004,24(2):167-172.

[20]周洪华,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换特性及其环境解释[J].中国沙漠,2008,28(4):665-672.

[21]买尔燕古丽·阿不都热合曼,艾里西尔·库尔班,阿迪力·阿不来提,等.塔里木河下游胡杨物候特征观测[J].干旱区研究,2008,25(4):525-530.

[22]古丽·加帕尔,陈曦,马忠国,等.极端干旱区荒漠稀疏河岸林遥感分类研究[J].中国沙漠,2009,29(6):1153-1161.

[23]陈永金,陈亚宁,刘家珍,等.塔里木河下游植被覆盖度变化与地下水质关系[J].环境科学,2010,31(3):612-617.

[24]徐海量,陈亚宁,杨戈,等.塔里木河下游生态输水对植被和地下水位的影响[J].环境科学,2003,24(4):18-22.

[25]孙涛,李纪人,杜龙江,等.塔里木河下游应急输水前后生态变化遥感监测分析[J].中国水利水电科学研究院学报,2004,2(3):179-188.

[26]Huete A R.A soil adjusted vegetation index(SAVI)[J].Remote Sensing of Environment,1988,25:295-309.

[27]胡广录,赵文智,刘鹄,等.内陆河小流域综合治理对景观格局的影响——以童子坝河流域为例[J].中国沙漠,2010,30(6):1398-1404.

[28]陈文波,肖笃宁,李秀珍.景观指数分类、应用及构建研究[J].应用生态学报,2002,1(13):121-125.

[29]葛晓东,明鑫,叶青,等.科尔沁沙地近水区域土地利用及沙漠化时空过程研究——以奈曼旗为例[J].中国沙漠,2010,30(5):1012-1018.
No Suggested Reading articles found!