Biology and Soil |
|
|
|
|
Some Questions on Modeling the Desert Plants Transpiration Process in China |
YUAN Guo-fu1, ZHANG Pei1,2, LUO Yi3 |
1.Sub-center for Water, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
3.Yucheng Integrated Agricultural Experimental Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
|
|
Abstract Transpiration process of desert plants is a key issue on ecohydrological process research in arid regions. At present, simulation of plant transpiration process is generally based on photosynthesis-stomatal conductance-transpiration coupled models, which simulate the water and carbon exchange between plant and air, and explain the mechanisms of interaction between plant physiological activities and water environment. For special water environment in arid regions of China, the desert plants have unique ecophysiological responses to the arid environment, which makes the desert plants transpiration processes in arid region of China unique. It is necessary to make revision on some processes and threshold values in transpiration process models when using the present popular transpiration models to the desert plants modeling in Chinese arid regions. The key to make the revisions is to understand and simulate three processes, including the water movement in SPAC, the ecophysiological responses to water stress, and the leaf stomatal conductance activities of desert plants in China. This paper reviews some advances in related researches, and discusses some questions about the above-mentioned three processes.
|
Received: 08 April 2011
Published: 20 January 2012
|
|
[1]梁顺林,刘荣高,秦军,等.支持生态模型模拟的地面要素遥感观测与反演[M]//于贵瑞.人类活动与生态系统变化的前沿科学问题.北京: 高等教育出版社,2009:121-152[2]Sellers P J,Dickinson R E,Randall D A,et al.Modeling the exchanges of energy,water,and carbon between continents and the atmosphere[J].Sciences,1997,275(5299):502-509[3]Ball J T,Woodrow I E,Berry J A.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[C].Biggins I.Progress In Photosynthesis Research.Martinus Nijhoff Publishers,The Netherlands,1987:221-224[4]Leuning R.A critical appraisal of a combined stomatal-photosynthesis model for C3 plants [J].Plant Cell Environ,1995,18(4):339-355.[5]Farquhar G D,von Caemmerer S,Berry J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J].Planta,1980,149(1):78-90.[6]Collatz G J,Ball J T,Grivet C,et al.Physiological and environmental regulation of stomatal conductance photosynthesis and transpiration:A model that includes a laminar boundary layer[J].Agric For Meteorol,1991,54(2-4):107-136.[7]Tuzet A,Perrier A,Leuning R.Stomatal control of photosynthesis and transpiration:Results from a soil plant atmosphere continuum model[J].Plant Cell Environ,2003,26(7):1097-1116.[8]Wang S,Grant R F,Verseghy D L,et al.Modelling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS—the Canadian Land Surface Scheme[J].Ecological Modelling,2001,142(1-2):135-154.[9]Jarvis P G.The interpretation of the variations in water potential and stomatal conductance found in canopies in the field[J].Phil Trans Roy Soc London Ser B 1976,273(927):593-610.[10]Kramer P J.Water Relations of Plants[M].New York:Academic Press,1983:55-75.[11]Wang S.Simulation of evapotranspiration and its response to plant water and CO2 transfer dynamics[J].Journal of Hydrometeorology,2008,9(3):426-443.[12]Yu Q,Xu S,Wang J,et al.Influence of leaf water potential on diurnal changes in CO2 and water vapour fluxes[J].Boundary-Layer Meteorology,2007,124(2):161-181.[13]Daly E.Porporato A,Rodriguez-Iturbe I.Coupled dynamics of photosynthesis,transpiration,and soil water balance.Part I:Upscaling from hourly to daily level[J].Journal of Hydrometeorology,2004,5(3):546-558.[14]Gao Q,Zhao P,Zeng X,et al.A model of stomatal conductance to quantify the relationship between leaf transpiration,microclimate and soil water stress[J].Plant,Cell Environ,2002,25(11):1373-1381.[15]Emanual R E,DOdorico P,Epstein H E.A dynamic soil water threshold for vegetation water stress derived from stomatal conductance models[J].Water Resources Research,2007,43(3),W03431,doi:10.1029/ 2005WR004831.[16]Makela A,Landsberg J Ek A,Burk T E,et al.Process-based models for forest ecosystem management:Current state of the art and challenges for practical implementation[J].Tree Physiology,2000,20(5-6):289-298.[17]Zhang Y,Grant R F,Flanagan L B,et al.Modelling CO2 and energy exchanges in a northern semiarid grassland using the carbon-and nitrogen-coupled Canadian Land Surface Scheme (C-CLASS)[J].Ecological Modelling,2005,181(4):591-614.[18]Wang J,Yu Q,Li J,et al.Simulation of diurnal variations of CO2,water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration[J].Agri For Meteorol,2006,137(3-4):194-219.[19]Gries D,Zeng F,Foetzki,et al.Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J].Plant,Cell Environ,2003,26(5):725-736.[20]冷疏影,李新荣,李彦,等.我国生物地理学研究进展[J].地理学报,2009,64(9):1039-1047.[21]康尔泗,陈仁升,张智慧,等.内陆河流域水文过程研究的一些科学问题[J].地球科学进展,2007,22(9):940-953.[22]许浩,李彦.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报,2005,25(7):1309-1316.[23]闫海龙,梁少民,张希明,等.塔克拉玛干沙漠特有灌木光合作用对生境中特殊温度、湿度及辐射变化的响应[J].科学通报,2008,53(增刊Ⅱ):74-81.[24]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.[25]张海清,常金宝.额济纳旗柽柳气体交换与水分利用效率日变化研究[J].内蒙古师范大学学报,2006,35(2):229-233.[26]刘冰,赵文智.荒漠绿洲过渡带柽柳和泡泡刺光合作用及水分代谢的生态适应性[J].中国沙漠,2009,29(1):101-107.[27]张小由,康尔泗,张智慧,等.沙枣树干液流的动态研究[J].中国沙漠,2006,26(2):146-151.[28]张小由,康尔泗,司建华,等.额济纳绿洲中柽柳耗水规律的研究[J].干旱区资源与环境,2006,20(3):159-164.[29]张丽,董增川,黄晓铃.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠,2004,24(1):110-113.[30]柏新富,朱建军,赵爱芬,等.几种荒漠植物对干旱过程的生理适应性比较[J].应用与环境生物学报,2008,14(6):763-768.[31]Rouhi V,Samson R,Lemeur R,et al.Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery[J].Environ Exp Bot,2007,59(2):117-129.[32]马剑英,周邦才,夏敦胜,等.荒漠植物红砂叶绿素和脯氨酸累积与环境因子的相关分析[J].西北植物学报,2007,27(4):769-775.[33]汪月霞,孙国荣,王建波,等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,2006,26(1):122-129.[34]Tezara W,Martinez D,Rengifo E,et al.Photosynthetic responses of the tropical spiny shrub Lycium nodosum(Solanaceae) to drought,soil salinity and saline spray[J].Ann Bot,2003,92(6):757-765.[35]Tuna A L,Kaya C,Ashraf M,et al.The effects of calcium sulphate on growth,membrane stability and nutrient uptake of tomato plants grown under salt stress[J].Environ Exp Bot,2007,59(2):173-178.[36]陈亚宁,陈亚鹏,李卫红,等.塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J].科学通报,2003,48(9):958-961.[37]陈敏,陈亚宁,李卫红.塔里木河中游地区柽柳对地下水埋深的生理响应[J].西北植物学报,2008,28(7):1415-1421.[38]陈亚宁,王强,李卫红,等.植被生理生态数据表征的合理地下水位研究[J].科学通报,2006,51(增刊I):7-13.[39]郝兴明,陈亚宁,李卫红,等.胡杨根系水力提升作用的证据及其生态学意义[J].植物生态学报,2009,33(6):1125-1131.[40]徐海量,宋郁东,王强,等.塔里木河中下游地区不同地下水位对植被的影响[J].植物生态学报,2004,28(3):400-405.[41]Hao X,Li W,Chen Y,et al.Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River,China[J].Hydrological Processes,2010,24(2):178-186.[42]李卫红,郝兴明,覃新闻,等.干旱区内陆河流域荒漠河岸林群落生态过程与水文机制研究[J].中国沙漠,2008,28(6):1113-1117.[43]Xu H,Li Y.Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J].Plant and Soil,2006,285(1-2):5-17.[44]Xu H,Li Y,Xu G et al.Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation[J].Plant,Cell Environ,2007,30(4):399-409.[45]李彦,许皓.梭梭对降水的响应与适应机制——生理、个体与群落水平碳水平衡的整合研究[J].干旱区地理,2008,31(3):313-323.[46]徐贵青,李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报,2009,29(1):130-137.[47]陈亚鹏,陈亚宁,李卫红,等.干旱环境下高温对胡杨光合作用的影响[J].中国沙漠,2009,29(1):474-479.[48]周洪华,陈亚宁,李卫红,等.干旱区胡杨光合作用对高温和CO2浓度的响应[J].生态学报,2009,29(6):2797-2810.[49]苏培玺,严巧娣.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报,2005,26(1):75-82.[50]常宗强,冯起,苏永红,等.额济纳绿洲胡杨的光合特征及其对光强和CO2浓度的响应[J].干旱区地理,2006,29(4):496-502.[51]陈亚鹏,陈亚宁,李卫红,等.塔里木河下游胡杨气体交换对CO2加富和地下水埋深的响应[J].水土保持学报,2008,22(5):217-224.[52]李怡,刘发民,宋耀先,等.柽柳叶片光合速率日变化特征的研究[J].安徽农业科学,2008,36(18):7559-7560.[53]何斌,李卫红,陈永金,等.干旱胁迫条件下胡杨茎流与茎直径变化分析——以塔里木河下游英苏断面为例[J].干旱区地理,2007,30(2):223-230.[54]张小由,龚家栋.利用热脉冲技术对梭梭液流的研究[J].西北植物学报,2004,24(12):2250-2254.[55]何斌,陈亚宁,李卫红,等.塔里木河下游地区胡杨、柽柳液流变化研究[J].干旱区资源与环境,2007,21(7):135-141.[56]付爱红,陈亚宁,陈亚鹏.塔里木河下游干旱胁迫下多枝柽柳茎水势的变化[J].生态学杂志,2008,27(4):532-538.[57]宋耀选,周茂先,张小由,等.额济纳绿洲主要植物的水势与环境因子的关系[J].中国沙漠,2005,25(3):496-499.[58]付爱红,陈亚宁,李卫红.新疆塔里木河下游怪柳茎水势变化与影响因子研究[J].干旱区地理,2007,30(1):108-114.[59]司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报,2008,28(1):125-130.[60]秦景,贺康宁,朱艳艳.库布齐沙漠几种常见灌木光合生理特征与土壤含水量的关系[J].北京林业大学学报,2009,31(1):37-43.[61]苏永红,朱高峰,冯起,等.额济纳荒漠河岸胡杨林叶片气孔导度与微环境因子关系的模拟研究[J].西北植物学报,2008,28(7):1434-1439. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|