Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (3): 346-356.DOI: 10.7522/j.issn.1000-694X.2025.00056
Previous Articles Next Articles
Weiqi Yao1,2(), Yafeng Zhang1(
), Chuan Yuan3, Jingliang Chen1,2, Jianqiang Huo1, Yanxia Pan1, Miaomiao Wang4
Received:
2025-04-01
Revised:
2025-05-07
Online:
2025-05-20
Published:
2025-06-30
Contact:
Yafeng Zhang
CLC Number:
Weiqi Yao, Yafeng Zhang, Chuan Yuan, Jingliang Chen, Jianqiang Huo, Yanxia Pan, Miaomiao Wang. The influence of morphological characteristics of Caragana korshinskii on stemflow production[J]. Journal of Desert Research, 2025, 45(3): 346-356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00056
形态 参数 | 编号 | ||||
---|---|---|---|---|---|
Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 | |
株高/m | 2.88 | 2.07 | 2.04 | 1.85 | 1.98 |
冠幅/cm | 308×409 | 199×206 | 180×155 | 247×265 | 178×202 |
基径/mm | 48.48 | 24.48 | 23.45 | 21.25 | 21.09 |
基部面积/m² | 0.129 | 0.122 | 0.062 | 0.034 | 0.032 |
叶面积指数 | 1.07 | 0.86 | 0.55 | 1.07 | 0.62 |
分枝数/个 | 26 | 11 | 13 | 11 | 14 |
冠层投影 面积/m² | 9.89 | 3.22 | 2.19 | 5.14 | 2.82 |
冠层体积/m³ | 9.50 | 2.22 | 1.49 | 3.17 | 1.86 |
Table 1 Morphological metrics of Caragana korshinskii selected for the experiment
形态 参数 | 编号 | ||||
---|---|---|---|---|---|
Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 | |
株高/m | 2.88 | 2.07 | 2.04 | 1.85 | 1.98 |
冠幅/cm | 308×409 | 199×206 | 180×155 | 247×265 | 178×202 |
基径/mm | 48.48 | 24.48 | 23.45 | 21.25 | 21.09 |
基部面积/m² | 0.129 | 0.122 | 0.062 | 0.034 | 0.032 |
叶面积指数 | 1.07 | 0.86 | 0.55 | 1.07 | 0.62 |
分枝数/个 | 26 | 11 | 13 | 11 | 14 |
冠层投影 面积/m² | 9.89 | 3.22 | 2.19 | 5.14 | 2.82 |
冠层体积/m³ | 9.50 | 2.22 | 1.49 | 3.17 | 1.86 |
编号 | 基径/mm | 长度/cm | 朝向/(°) | 枝下高/cm | 倾角>65° | 倾角<65° |
---|---|---|---|---|---|---|
Ck_1 | 0.48* | 0.39 | -0.15 | -0.19 | -0.51* | 0.90** |
Ck_2 | 0.89** | -0.66* | -0.19 | -0.47 | -0.89** | 0.97* |
Ck_3 | 0.92** | 0.78** | -0.14 | -0.09 | -0.98* | 0.66 |
Ck_4 | 0.78* | 0.93** | 0.17 | -0.07 | NA | 0.95** |
Ck_5 | 0.99** | 0.61* | 0.14 | 0.51 | -0.84* | -0.62 |
Table 2 Correlation between stemflow production and branch morphological characteristics of Caragana korshinskii
编号 | 基径/mm | 长度/cm | 朝向/(°) | 枝下高/cm | 倾角>65° | 倾角<65° |
---|---|---|---|---|---|---|
Ck_1 | 0.48* | 0.39 | -0.15 | -0.19 | -0.51* | 0.90** |
Ck_2 | 0.89** | -0.66* | -0.19 | -0.47 | -0.89** | 0.97* |
Ck_3 | 0.92** | 0.78** | -0.14 | -0.09 | -0.98* | 0.66 |
Ck_4 | 0.78* | 0.93** | 0.17 | -0.07 | NA | 0.95** |
Ck_5 | 0.99** | 0.61* | 0.14 | 0.51 | -0.84* | -0.62 |
序号 | 基径 /mm | 基径标准化 系数 | 基径 评价值 | 长度 /cm | 长度标准化 系数 | 长度 评价值 | 倾角 /(°) | 倾角标准 化系数 | 倾角 评价值 | 综合 评价值 |
---|---|---|---|---|---|---|---|---|---|---|
A | 28 | 0.130 | 0.039 | 237 | 0.120 | 0.009 | 20 | 0.049 | 0.031 | 0.078 |
B | 25 | 0.066 | 0.050 | 237 | 0.060 | 0.012 | 85 | 0.061 | 0.003 | 0.065 |
C | 8.5 | 0.023 | 0.017 | 221 | 0.056 | 0.011 | 90 | 0.065 | 0.003 | 0.031 |
D | 13.5 | 0.036 | 0.027 | 229 | 0.058 | 0.012 | 90 | 0.064 | 0.003 | 0.042 |
E | 33.55 | 0.089 | 0.067 | 225 | 0.057 | 0.011 | 85 | 0.061 | 0.003 | 0.081 |
F | 16.51 | 0.044 | 0.033 | 221 | 0.056 | 0.011 | 85 | 0.061 | 0.003 | 0.047 |
G | 18.12 | 0.048 | 0.036 | 269 | 0.068 | 0.014 | 90 | 0.064 | 0.003 | 0.053 |
H | 19.56 | 0.052 | 0.039 | 141 | 0.036 | 0.007 | 85 | 0.061 | 0.003 | 0.049 |
I | 17.46 | 0.046 | 0.035 | 174 | 0.044 | 0.009 | 90 | 0.064 | 0.003 | 0.047 |
J | 19.53 | 0.052 | 0.039 | 275 | 0.069 | 0.014 | 90 | 0.064 | 0.003 | 0.056 |
K | 18.44 | 0.085 | 0.026 | 267 | 0.135 | 0.010 | 60 | 0.146 | 0.091 | 0.127 |
L | 33.88 | 0.157 | 0.047 | 261 | 0.132 | 0.010 | 65 | 0.159 | 0.099 | 0.156 |
M | 36.27 | 0.096 | 0.073 | 263 | 0.066 | 0.013 | 70 | 0.050 | 0.002 | 0.088 |
N | 25.63 | 0.119 | 0.036 | 199 | 0.101 | 0.007 | 60 | 0.146 | 0.091 | 0.135 |
O | 32.39 | 0.086 | 0.065 | 216 | 0.054 | 0.011 | 75 | 0.053 | 0.002 | 0.078 |
P | 20.1 | 0.053 | 0.040 | 275 | 0.069 | 0.014 | 80 | 0.057 | 0.002 | 0.056 |
Q | 16.67 | 0.044 | 0.033 | 288 | 0.073 | 0.015 | 80 | 0.057 | 0.002 | 0.050 |
R | 26.49 | 0.070 | 0.053 | 172 | 0.043 | 0.009 | 70 | 0.050 | 0.002 | 0.064 |
S | 18.41 | 0.085 | 0.026 | 202 | 0.102 | 0.008 | 65 | 0.159 | 0.099 | 0.132 |
T | 25.97 | 0.069 | 0.052 | 229 | 0.058 | 0.012 | 75 | 0.053 | 0.002 | 0.066 |
U | 16.48 | 0.044 | 0.033 | 251 | 0.063 | 0.013 | 85 | 0.061 | 0.003 | 0.048 |
V | 32.37 | 0.086 | 0.065 | 282 | 0.071 | 0.014 | 80 | 0.057 | 0.002 | 0.081 |
W | 12.58 | 0.058 | 0.018 | 174 | 0.088 | 0.006 | 50 | 0.122 | 0.076 | 0.100 |
X | 23.65 | 0.110 | 0.033 | 197 | 0.100 | 0.007 | 35 | 0.085 | 0.053 | 0.094 |
Y | 24.24 | 0.112 | 0.034 | 227 | 0.115 | 0.008 | 30 | 0.073 | 0.046 | 0.088 |
Z | 31.05 | 0.144 | 0.043 | 212 | 0.107 | 0.008 | 25 | 0.061 | 0.038 | 0.089 |
Table 3 Branch parameters,standardization coefficients,and comprehensive evaluation value of Ck_1
序号 | 基径 /mm | 基径标准化 系数 | 基径 评价值 | 长度 /cm | 长度标准化 系数 | 长度 评价值 | 倾角 /(°) | 倾角标准 化系数 | 倾角 评价值 | 综合 评价值 |
---|---|---|---|---|---|---|---|---|---|---|
A | 28 | 0.130 | 0.039 | 237 | 0.120 | 0.009 | 20 | 0.049 | 0.031 | 0.078 |
B | 25 | 0.066 | 0.050 | 237 | 0.060 | 0.012 | 85 | 0.061 | 0.003 | 0.065 |
C | 8.5 | 0.023 | 0.017 | 221 | 0.056 | 0.011 | 90 | 0.065 | 0.003 | 0.031 |
D | 13.5 | 0.036 | 0.027 | 229 | 0.058 | 0.012 | 90 | 0.064 | 0.003 | 0.042 |
E | 33.55 | 0.089 | 0.067 | 225 | 0.057 | 0.011 | 85 | 0.061 | 0.003 | 0.081 |
F | 16.51 | 0.044 | 0.033 | 221 | 0.056 | 0.011 | 85 | 0.061 | 0.003 | 0.047 |
G | 18.12 | 0.048 | 0.036 | 269 | 0.068 | 0.014 | 90 | 0.064 | 0.003 | 0.053 |
H | 19.56 | 0.052 | 0.039 | 141 | 0.036 | 0.007 | 85 | 0.061 | 0.003 | 0.049 |
I | 17.46 | 0.046 | 0.035 | 174 | 0.044 | 0.009 | 90 | 0.064 | 0.003 | 0.047 |
J | 19.53 | 0.052 | 0.039 | 275 | 0.069 | 0.014 | 90 | 0.064 | 0.003 | 0.056 |
K | 18.44 | 0.085 | 0.026 | 267 | 0.135 | 0.010 | 60 | 0.146 | 0.091 | 0.127 |
L | 33.88 | 0.157 | 0.047 | 261 | 0.132 | 0.010 | 65 | 0.159 | 0.099 | 0.156 |
M | 36.27 | 0.096 | 0.073 | 263 | 0.066 | 0.013 | 70 | 0.050 | 0.002 | 0.088 |
N | 25.63 | 0.119 | 0.036 | 199 | 0.101 | 0.007 | 60 | 0.146 | 0.091 | 0.135 |
O | 32.39 | 0.086 | 0.065 | 216 | 0.054 | 0.011 | 75 | 0.053 | 0.002 | 0.078 |
P | 20.1 | 0.053 | 0.040 | 275 | 0.069 | 0.014 | 80 | 0.057 | 0.002 | 0.056 |
Q | 16.67 | 0.044 | 0.033 | 288 | 0.073 | 0.015 | 80 | 0.057 | 0.002 | 0.050 |
R | 26.49 | 0.070 | 0.053 | 172 | 0.043 | 0.009 | 70 | 0.050 | 0.002 | 0.064 |
S | 18.41 | 0.085 | 0.026 | 202 | 0.102 | 0.008 | 65 | 0.159 | 0.099 | 0.132 |
T | 25.97 | 0.069 | 0.052 | 229 | 0.058 | 0.012 | 75 | 0.053 | 0.002 | 0.066 |
U | 16.48 | 0.044 | 0.033 | 251 | 0.063 | 0.013 | 85 | 0.061 | 0.003 | 0.048 |
V | 32.37 | 0.086 | 0.065 | 282 | 0.071 | 0.014 | 80 | 0.057 | 0.002 | 0.081 |
W | 12.58 | 0.058 | 0.018 | 174 | 0.088 | 0.006 | 50 | 0.122 | 0.076 | 0.100 |
X | 23.65 | 0.110 | 0.033 | 197 | 0.100 | 0.007 | 35 | 0.085 | 0.053 | 0.094 |
Y | 24.24 | 0.112 | 0.034 | 227 | 0.115 | 0.008 | 30 | 0.073 | 0.046 | 0.088 |
Z | 31.05 | 0.144 | 0.043 | 212 | 0.107 | 0.008 | 25 | 0.061 | 0.038 | 0.089 |
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
Table 4 Weights of each indicator
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
综合评价值 | Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 |
---|---|---|---|---|---|
>65° | 0.71** | -0.86* | 0.92** | NA | 0.84* |
≤65° | 0.31 | 0.99* | 0.66 | 0.97** | 0.98* |
Table 5 Correlation between Caragana korshinskii and entropy weight
综合评价值 | Ck_1 | Ck_2 | Ck_3 | Ck_4 | Ck_5 |
---|---|---|---|---|---|
>65° | 0.71** | -0.86* | 0.92** | NA | 0.84* |
≤65° | 0.31 | 0.99* | 0.66 | 0.97** | 0.98* |
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
Ck_2(>65°) | 0.18 | 0.35 | 0.47 |
Ck_2(≤65°) | 0.41 | 0.03 | 0.57 |
Ck_3(>65°) | 0.68 | 0.25 | 0.07 |
Ck_3(≤65°) | 0.45 | 0.46 | 0.10 |
Ck_4(≤65°) | 0.33 | 0.21 | 0.46 |
Ck_5(>65°) | 0.81 | 0.11 | 0.08 |
Ck_5(≤65°) | 0.56 | 0.30 | 0.14 |
平均值±标准差 | 0.50±0.20 | 0.22±0.13 | 0.28±0.23 |
Table 6 Weights of each indicator
编号 | 基径/mm | 长度/cm | 倾角/(°) |
---|---|---|---|
Ck_1(>65°) | 0.75 | 0.20 | 0.04 |
Ck_1(≤65°) | 0.30 | 0.07 | 0.62 |
Ck_2(>65°) | 0.18 | 0.35 | 0.47 |
Ck_2(≤65°) | 0.41 | 0.03 | 0.57 |
Ck_3(>65°) | 0.68 | 0.25 | 0.07 |
Ck_3(≤65°) | 0.45 | 0.46 | 0.10 |
Ck_4(≤65°) | 0.33 | 0.21 | 0.46 |
Ck_5(>65°) | 0.81 | 0.11 | 0.08 |
Ck_5(≤65°) | 0.56 | 0.30 | 0.14 |
平均值±标准差 | 0.50±0.20 | 0.22±0.13 | 0.28±0.23 |
1 | Návar J, Bryan R.Interception loss and rainfall redistribution by three semi-arid growing shrubs in Northeastern Mexico[J].Journal of Hydrology,1990,115:51-63. |
2 | Keim R F, Skaugset A E, Weiler M.Temporal persistence of spatial patterns in throughfall[J].Journal of Hydrology,2005,314:263-274. |
3 | Mauchamp A, Janeau J L.Water funnelling by the crown of Flourensia cernua,a Chihuahuan Desert shrub[J].Journal of Arid Environments,1993,25(3):299-306. |
4 | Levia Jr D F, Frost E E.A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J].Journal of Hydrology,2003,274:1-29. |
5 | Llorens P, Domingo F.Rainfall partitioning by vegetation under Mediterranean conditions:a review of studies in Europe[J].Journal of Hydrology,2007,335:37-54. |
6 | Zhang Y, Wang X, Pan Y,et al.Global quantitative synthesis of effects of biotic and abiotic factors on stemflow production in woody ecosystems[J].Global Ecology and Biogeography,2021,30:1713-1723. |
7 | Parker G G.Throughfall and stemflow in the forest nutrient cycle[J].Advances in Ecological Research,1983,13:57-133. |
8 | Johnson M S, Lehmann J.Double-funneling of trees:stemflow and root-induced preferential flow[J].Ecoscience,2006,13(3):324-333. |
9 | Guo L, Mount G J, Hudson S,et al.Pairing geophysical techniques improves understanding of the near-surface critical zone:visualization of preferential routing of stemflow along coarse roots[J].Geoderma,2020,357:113953. |
10 | Zhang Y, Wang X, Hu R,et al.Stemflow in two xerophytic shrubs and its significance to soil water and nutrient enrichment[J].Ecological Research,2013,28:567-579. |
11 | Pugnaire F I, Haase P, Puigdefábregas J,et al.Facilitation and succession under the canopy of a leguminous shrub,Retama sphaerocarpa,in a semi-arid environment in South-east Spain[J].Oikos,1996:455-464. |
12 | Schlesinger W H, Raikes J A, Hartley A E,et al.On the spatial pattern of soil nutrients in desert ecosystems:ecological archives E077-002[J].Ecology,1996,77(2):364-374. |
13 | Herwitz S R.Infiltration‐excess caused by stemflow in a cyclone‐prone tropical rainforest[J].Earth Surface Processes and lLandforms,1986,11(4):401-412. |
14 | Neave M, Abrahams A D.Vegetation influences on water yields from grassland and shrubland ecosystems in the Chihuahuan Desert[J].Earth Surface Processes and Landforms,2002,27(9):1011-1020. |
15 | Charlier J B, Moussa R, Cattan P,et al.Modelling runoff at the plot scale taking into account rainfall partitioning by vegetation:application to stemflow of banana (Musa spp.) plant[J].Hydrology and Earth System Sciences,2009,13(11):2151-2168. |
16 | Herwitz S R.Buttresses of tropical rainforest trees influence hillslope processes[J].Earth Surface Processes and Landforms,1988,13(6):563-567. |
17 | Wainwright J, Parsons A J, Abrahams A D.Rainfall energy under creosotebush[J].Journal of Arid Environments,1999,43(2):111-120. |
18 | Schwärzel K, Ebermann S, Schalling N.Evidence of double-funneling effect of beech trees by visualization of flow pathways using dye tracer[J].Journal of Hydrology,2012,470:184-192. |
19 | Taniguchi M, Tsujimura M, Tanaka T.Significance of stemflow in groundwater recharge 1:evaluation of the stemflow contribution to recharge using a mass balance approach[J].Hydrological Processes,1996,10(1):71-80. |
20 | Chang S C, Matzner E.The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand[J].Hydrological Processes,2000,14(1):135-144. |
21 | Liang W L, Kosugi K, Mizuyama T.Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow[J].Water Resources Research,2011,47(2). |
22 | Awasthi O P, Sharma E, Palni L M S.Stemflow:a source of nutrients in some naturally growing epiphytic orchids of the Sikkim Himalaya[J].Annals of Botany,1995,75(1):5-11. |
23 | Martinez-Meza E, Whitford W G.Stemflow,throughfall and channelization of stemflow by roots in three Chihuahuan Desert shrubs[J].Journal of Arid Environments,1996,32(3):271-288. |
24 | Li X Y, Liu L Y, Gao S Y,et al.Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China[J].Agricultural and Forest Meteorology,2008,148(10):1501-1507. |
25 | Shou W, Musa A, Liu Z,et al.Rainfall partitioning characteristics of three typical sand-fixing shrubs in Horqin Sand Land,North-eastern China[J].Hydrology Research,2017,48(2):571-583. |
26 | Kelly J M.Power plant influences on bulk precipitation,throughfall,and stemflow nutrient inputs[R].American Society of Agronomy,Crop Science Society of America,and Soil Science Society of America.1984. |
27 | Levia D F, Van Stan II J T, Mage S M,et al.Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size[J].Journal of Hydrology,2010,380:112-120. |
28 | Brown Jr J H, Barker Jr A C.An analysis of throughfall and stemflow in mixed oak stands[J].Water Resources Research,1970,6(1):316-323. |
29 | Ford E D, Deans J D.The effects of canopy structure on stemflow,throughfall and interception loss in a young Sitka spruce plantation[J].Journal of Applied Ecology,1978,15(3):905-917. |
30 | 杨永胜,卜崇峰,高国雄.平茬措施对柠条生理特征及土壤水分的影响[J].生态学报,2012,32(4):323-332. |
31 | Zhang Y, Wang X, Pan Y,et al.Alteration in isotopic composition of gross rainfall as it is being partitioned into throughfall and stemflow by xerophytic shrub canopies within water-limited arid desert ecosystems[J].Science of the Total Environment,2019,692:631-639. |
32 | 李新荣.荒漠生物土壤结皮生态与水文学研究[M].北京:高等教育出版社,2012. |
33 | Zhang Y, Wang X, Pan Y,et al.Relative contribution of biotic and abiotic factors to stemflow production and funneling efficiency:a long-term field study on a xerophytic shrub species in Tengger Desert of northern China[J].Agricultural and Forest Meteorology,2020,280:107781. |
34 | Wang X P, Wang Z, Cui Y,et al.Variation in soil seed banks composition at the desert microhabitats of Caragana korshinskii shrubs[J].Arid Land Research and Management,2010,24(3):238-252. |
35 | 张亚峰,王新平,虎瑞,等.荒漠灌丛降雨再分配对土壤pH值的影响[J].中国沙漠,2013,33(5):1400-1405. |
36 | Germer S, Werther L, Elsenbeer H.Have we underestimated stemflow?Lessons from an open tropical rainforest[J].Journal of Hydrology,2010,395:169-179. |
37 | Jian S Q, Zhao C Y, Fang S M,et al.Characteristics of Caragana korshinskii and Hippophae rhamnoides stemflow and their significance in soil moisture enhancement in Loess Plateau,China[J].Journal of Arid Land,2014,6:105-116. |
38 | Zhang S Y, Li X Y, Li L,et al.The measurement and modelling of stemflow in an alpine Myricaria squamosa community[J].Hydrological Processes,2015,29(6):889-899. |
39 | Zhang Y, Wang X, Hu R,et al.Rainfall partitioning into throughfall,stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem,Northwestern China[J].Journal of Hydrology,2015,527:1084-1095. |
40 | Zhang Y, Wang X, Hu R,et al.Stemflow volume per unit rainfall as a good variable to determine the relationship between stemflow amount and morphological metrics of shrubs[J].Journal of Arid Environments,2017,141:1-6. |
41 | Manfroi O J, Koichiro K, Nobuaki T,et al.The stemflow of trees in a Bornean lowland tropical forest[J].Hydrological Processes,2004,18(13):2455-2474. |
42 | Pryet A, Dominguez C, Tomai P F,et al.Quantification of cloud water interception along the windward slope of Santa Cruz Island,Galapagos (Ecuador)[J].Agricultural and Forest Meteorology,2012,161:94-106. |
43 | Rakestraw E, Jacobson S, Gurian P L,et al.Quantification of stemflow in three isolated shrub species in an urban environment[J].Frontiers in Built Environment,2019,5:110. |
44 | Yang X, Wei X.Stemflow production differ significantly among tree and shrub species on the Chinese Loess Plateau[J].Journal of Hydrology,2019,568:427-436. |
45 | Domingo F, Puigdefabregas J, Moro M J,et al.Role of vegetation cover in the biogeochemical balances of a small afforested catchment in Southeastern Spain[J].Journal of Hydrology,1994,159:275-289. |
46 | 杨志鹏,李小雁,孙永亮,等.毛乌素沙地沙柳灌丛降雨截留与树干茎流特征[J].水科学进展,2008,19(5):693-698. |
47 | Zhang S Y, Li X Y, Jiang Z Y,et al.Modelling of rainfall partitioning by a deciduous shrub using a variable parameters Gash model[J].Ecohydrology,2018,11(7):e2011. |
48 | 李小雁.干旱地区土壤-植被-水文耦合、响应与适应机制[J].中国科学:地球科学,2011,41(12):1721-1730. |
49 | Li X Y, Yang Z P, Li Y T,et al.Connecting ecohydrology and hydropedology in desert shrubs:stemflow as a source of preferential flow in soils[J].Hydrology and Earth System Sciences,2009,13(7):1133-1144. |
50 | Park H T, Hattori S.Applicability of stand structural characteristics to stemflow modeling[J].Journal of Forest Research,2002,7(2):91-98. |
51 | Zhang Y, Wang X, Hu R,et al.Differential intra-specific stemflow funnelling efficiencies of Caragana korshinskii within arid desert ecosystems[J].Hydrology Research,2017,48(6):1611-1623. |
52 | Zhang Y, Wang X, Pan Y,et al.How do rainfall intensity and raindrop size determine stemflow production?quantitative evaluation from field rainfall simulation experiments[J].Hydrological Sciences Journal,2021,66(13):1979-1985. |
53 | Honda E A, Mendonça A H, Durigan G.Factors affecting the stemflow of trees in the Brazilian Cerrado[J].Ecohydrology,2015,8(7):1351-1362. |
54 | Whitworth-Hulse J I, Magliano P N, Zeballos S R,et al.Advantages of rainfall partitioning by the global invader Ligustrum lucidum over the dominant native Lithraea molleoides in a dry forest[J].Agricultural and Forest Meteorology,2020,290:108013. |
55 | Martinez-Meza E.Stemflow,Throughfall,and Root Water Channelization by Three Arid Land Shrubs in Southern New Mexico[D].Las Cruces,USA:New Mexico State University,1994. |
56 | 赵文玥,吉喜斌,金博文,等.西北干旱区泡泡刺灌丛的降雨再分配特征及影响因素分析[J].生态学报,2022,42(2):804-817. |
57 | Yuan C, Gao G, Fu B.Comparisons of stemflow and its bio-/abiotic influential factors between two xerophytic shrub species[J].Hydrology and Earth System Sciences,2017,21(3):1421-1438. |
58 | 袁川,岳晓萍,张亚峰,等.冠层降雨再分配驱动生态系统养分富集:机制、数量与模式[J].中国科学:地球科学,2024,54(5):1556-1572. |
[1] | Yixue Zhao, Yang Zhao, Yuchao Lian, Yanqiao Zhao, Wenwen Xu. The influence of sand-sixing shrubs species and densities on the litter and biological soil crusts [J]. Journal of Desert Research, 2025, 45(3): 262-270. |
[2] | Jiale Li, Beibei Chen, Dinghai Zhang. Research progress on spatial point pattern of sand-fixing shrubs in sandy regions of Northern China [J]. Journal of Desert Research, 2025, 45(3): 102-112. |
[3] | Mingqiang Xing, Ke Ma, Cailiang Chen, Jing Li. Measurement and coupling coordination promotion path of agricultural green development level in the Hexi Region [J]. Journal of Desert Research, 2024, 44(6): 207-219. |
[4] | Xiaohan Chen, Yongsheng Wu, Chunxing Hai. Effects of surface dew under different types of sand-fixing shrubs in the southern margin of Mu Us Sandy Land, Northern China [J]. Journal of Desert Research, 2023, 43(1): 83-95. |
[5] | Hei Weigao, Zhan Jin, Han Dan, Yang Hongling, Li Yulin. Compatible Biomass Models for Two Dominant Sand-fixing Shrubs in Horqin Sandy Land [J]. Journal of Desert Research, 2019, 39(5): 193-199. |
[6] | ZHANG Ya-feng1,2, WANG Xin-ping1, HU Rui1,2, PAN Yan-xia1. Effects of Rainfall Redistribution Induced by Xerophytic Vegetation on Soil pH [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(5): 1400-1405. |
[7] | XU Xian-ying1,2,3, YAN Ping1, GUO Shu-jiang2,3, CHAI Cheng-wu2,3. The Interception Loss of Rainfall by Three Sand-fixing Shrubs at the Fringe of Minqin Oasis [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(1): 141-145. |
[8] | XIAO Ji-dong;WANG Zhi;SHI Qing-dong;CHANG Shun-li;XING Wen-yuan. Monitoring and Evaluating the Land Cover Dynamics Based on the Entropy Weight Method: A case study of Yili and Bozhou area in Xinjiang, China [J]. JOURNAL OF DESERT RESEARCH, 2011, 31(5): 1286-1292. |
[9] | YANG Zhi-peng;LI Xiao-yan;YI Wan-juan. Review on Stemflow of Desert Shrubs—Research Methods and Eco-hydrological Effects [J]. JOURNAL OF DESERT RESEARCH, 2010, 30(2): 303-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech