Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2009, Vol. 29 Issue (1): 143-150    DOI:
天气与气候     
Study Progress of Water and Energy Transfer in Soil-Plant-Atmosphere Interface Model

FENG Qi1, ZHANG Yan-wu2, SI Jian-hua1, XI Hai-yang1

1.Alex Desert Ecohydrological Experimental Research Station, Cold and Arid Regions Environmental Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.National Climate Centre of China Meteorological Administration, Beijing 100081, China
Download:  PDF (1446KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The paper reviewed research progress of water and energy physical process in interface between land and atmosphere and analyzed the different calculation methods of water and energy transfer in the SPAC (Soil-Plant-Atmosphere Continuity). After comparing these different simulation methods, the paper gave out their advantages and disadvantages in applying to arid region. Some new ideas were proposed in resolving the water and energy transfer problem in soil-plant-atmosphere continuity in arid regions in China. Further study emphasizes on basic surface data collecting, and uses the field observation data to verify the accurate degree of different simulation method, so as to formulate the parameterized method and set up the simulation soil-plant-atmosphere continuity model suitable for arid Northwest China region.

Key words:  study progress      water and energy transfer      soil-plant-atmosphere continuity      arid region     
Received:  04 March 2008      Published:  20 January 2009
ZTFLH:  S161.21  

Cite this article: 

FENG Qi;ZHANG Yan-wu;SI Jian-hua;XI Hai-yang. Study Progress of Water and Energy Transfer in Soil-Plant-Atmosphere Interface Model. JOURNAL OF DESERT RESEARCH, 2009, 29(1): 143-150.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2009/V29/I1/143

[1]Manabe.Climate and the ocean circulation:The atmospheric circulation and the hydrology of the earths surface[J].Mon Wea Rev,1969,97(10):739-774.
[2]鲍艳,吕世华.干旱、半干旱区陆-气相互作用的研究进展[J].中国沙漠,2006,26(3):454-457.
[3]刘树华,张景光,刘明,等.荒漠下垫面陆面过程和大气边界层相互作用敏感性试验[J].中国沙漠,2002,22(6):114-122.
[4]朱德琴,高晓清,陈文.陆面模式(SSIB)对敦煌荒漠戈壁下垫面陆面过程的模拟及敏感性试验[J].中国沙漠,2006,26(3):466-472.
[5]刘树华,李新荣,刘立超,等.陆面过程参数化模式的研究[J].中国沙漠,2001,21(3):303-309.
[6]刘立超,李新荣,冯金朝,等.一种适合干旱地区的陆面过程模式——LSPM的介绍[J].中国沙漠,2001,21(3):103-104.
[7]Xue Y,Sellers P J,Zeng F J,et al.Comments on use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models[J].J Climate,1997,10:374-376.
[8]Xue Y,Sellers P J,Kinter J L,et al.A simplified biosphere model for global climate studies[J].J Climate,1991,4(3):345-364.
[9]Dickinson R E.Land surface process and climate-surface albedos and energy balance[J].Advances in Geophysics,1983,25:305-353.
[10]Dickinson R E.The force-restore model for surface temperatures and its generalizations[J].J Climate,1988,1(10):1086-1097.
[11]Sellers P L.Canopy reflectance,photosynthesis and transpiration[J].Int J Remote Sens,1985,6:1335-1372.
[12]戴永久,曾庆存,王斌.一个简单的陆面过程模式[J].大气科学,1997,21(6):705-716.
[13]Bonan G B.A land surface model (LSM version 1.0) for ecological,hydrological,and atmospheric studies:technical description and users guide[C]∥NCAR Technical Note NCAR/TN-417+STR.National Center for Atmospheric Research.Colorado:Boulder,1996:150.
[14]Bonan G B.The NCAR land surface model (LSM version 1.0) coupled to the NCAR community climate model[C]∥NCAR Technical Note NCAR/TN-429+STR.National Center for Atmospheric Research.Colorado:Boulder,1996:171.
[15]Richards L A,Moore D C.Influence of capillary conductivity and depth of wetting on moisture retention in soil[J].Soil Sci Soc Am Proc,1952,20:310-314.
[16]司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459.
[17]Penman H L.Gas and vapor movements in the soil:1.The diffusion of vapors through porous solids[J].J Agr Sci,1940,30:437-461.
[18]Penman H L.Natural evaporation from open water,bare soil and grass[J].Proc R Soc London Ser.A,1948,193:120-146.
[19]Monteith J.WISPAS 66 (Water in the Soil-Plant-Atmosphere System)[M].Palmerston North,New Zealand:Hort Research,1997.
[20]陈镜明.现用遥感蒸散模式中的一个重要缺点及改进[J].科学通报,1988,33(6):454-457.
[21]Ciarapica L,Topkapi T E.A model for the representation of the rainfall-runoff process at different scales[J].Hydrol Process,2002,16:207-229.
[22]Bashford K E,Beven K J,Young P C.Observational data and scale dependent parameterizations:Explorations using a virtual hydrological reality[J].Hydrol Process,2002,16:293-312.
[23]Schlosser C A,Robock A,Vinnikov K Y,et al.18-year land surface hydrology model simulations for a midlatitude grassland catchments in Valdai[J].Russia Mon Wea Rev,1997,125:3279-3296.
[24]Menabde M,Sivapalan M.Lingking space-time variability of river runoff and rainfall fields:A dynamic approach[J].Advance Water Resource,2000,24:1001-1014.
[25]史学丽.陆面过程模式研究简评.应用气象学报[J].2001,12(1):102-112.
[26]Deardorff J W.A parameterization of ground-surface moisture content for use in atmospheric prediction models[J].J Appl Meteor,1977,16(11):1182-1185.
[27]Deardorff J W.Efficient prediction of ground surface temperature and moisture,with inclusion of a layer of vegetation[J].J Geophys Res,1978,83(C4):1889-1903.

No Suggested Reading articles found!