Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis
Received date: 2021-04-09
Revised date: 2021-06-29
Online published: 2021-12-17
Recently, human activities characterized by reclamation and cultivation accelerated oasisization of drylands in the northwest China. However, it is still unclear about how such land use changes impact characteristics of soil microbial communities in saline-alkaline desert. By using qPCR and Illumina Miseq high-throughput amplicon sequencing technologies, we conducted a comparative study on soil fungal, bacterial and archaeal community biomasses, diversities and structures in a 5-year-old cotton farmland soil (FS) and an adjacent natural desert soil (ND) in Alar oasis of Xinjiang province. The results showed that: (1)reclamation significantly increased bacterial and fungal biomasses, and decreased archaeal biomass based on qPCR estimation. While most bacterial diversity indices significantly increased and archaeal Shannon index decreased due to reclamation, fungal diversity indices were not significantly changed. (2) An unique microbial community different from other arid desert ecosystem inhabited in the salinization desert. Reclamation significantly changed soil bacterial, archaeal and fungal community structures. Especially, the relative abundances of Actinobacteria, Chloroflexi, Acdiobacteria, Saccharibacteria and Nitrosipirae bacteria, Woesearchaeota_DHVEG-6 archaea and Blastocladiomycota fungi in FS significantly increased, while that of Nanohaloarchaeota archaea significantly decreased compared to that in ND. Soil electrical conductivity (EC), total organic C(TOC), total N(TN), total P (TP) and available P (AP) were the key factors in determining bacterial community structure, vegetation coverage, aboveground biomass and richness, TP and AP were the key factors in shaping archaeal community structure, and EC was the key factors in structuring fungal community. In conclusion, oasisization due to recalmation divergently shifted characteristics of soil microbial community in salinization desert mainly due to changes in virginal vegetation, soil EC, TOC and TN and chemical fertilizers use, therein bacterial community showed the highest sensitivity to reclamation, while archaeal and fungal diversity and structure were relatively stable.
Key words: reclamation; desert; high-throughput sequencing; soil microbes; community structure
Yani Wang , Yigang Hu , Zengru Wang , Changsheng Li . Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis[J]. Journal of Desert Research, 2021 , 41(6) : 126 -137 . DOI: 10.7522/j.issn.1000-694X.2021.00079
1 | 王守华,王业伟,王业锦,等.浅析中国土地荒漠化生态治理现状、存在问题及对策[C]//中国治沙暨沙业学会,中国林业教育学会.《联合国防治荒漠化公约》第十三次缔约大会“防沙治沙与精准扶贫”边会论文集.2017:4-12. |
2 | 宋奇,冯春晖,高琪,等.阿拉尔垦区近三十年耕地变化及其驱动因子分析[J].国土资源遥感,2021,33(2):202-212. |
3 | 王鸣雷,史文娇.中国北方新增耕地的时空变化及驱动因素分区[J].中国农业科学,2020,53(12):2435-2449. |
4 | 韩云环,马柱国,李明星,等.2001~2010年中国区域土地利用/覆盖变化对陆面过程影响的模拟研究[J].气候与环境研究,2021,26(1):75-90. |
5 | 程维明,高晓雨,马廷,等.基于地貌分区的1990-2015年中国耕地时空特征变化分析[J].地理学报,2018,73(9):1613-1629. |
6 | 罗毅.干旱区绿洲滴灌对土壤盐碱化的长期影响[J].中国科学:地球科学,2014,44(8):1679-1688. |
7 | 席琳乔,马丽亚,王栋,等.灌溉方式对荒漠绿洲过渡带地下水与土壤理化性质的影响[J].塔里木大学学报,2020,32(1):62-70. |
8 | 王银亚,李晨华,马健.开垦对荒漠土壤微生物群落结构特征的影响[J].中国沙漠,2017,37(3):514-522. |
9 | 柳菲,陈沛源,于海超,等.民勤绿洲不同土地利用类型下土壤水盐的空间分布特征分析[J].干旱区地理,2020,43(2):406-414. |
10 | 陈小兵,杨劲松,刘春卿.新疆阿拉尔灌区土壤次生盐碱化防治及其相关问题研究[J].干旱区资源与环境,2007,21(6):168-172. |
11 | 韩桂红,吐尔逊·哈斯木,石丽.塔里木河下游土地沙漠化及其原因探讨[J].中国沙漠,2008(2):217-222. |
12 | 郭宏伟,徐海量,凌红波,等.塔里木河下游耕地扩张与天然植被退化的定量关系初探[J].干旱地区农业研究,2018,36(2):226-233. |
13 | Schloter M,Nannipieri P,Sorensen S J,et al.Microbial indicators for soil quality[J].Biology and Fertility of Soils,2018,54(1):1-10. |
14 | Zhang K,Shi Y,Cui X,et al.Salinity Is a key determinant for soil microbial communities in a desert ecosystem[J].Msystems,2019,4(1):1-11. |
15 | Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al.Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences,2015,112(51):15684-15689. |
16 | Delgado-Baquerizo M,Oliverio A M,Brewer T E,et al.A global atlas of the dominant bacteria found in soil[J].Science,2018,359(6373):320-325. |
17 | Wang Z R,Liu Y B,Zhao L N,et al.Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem[J].Peerj,2019,7:1-21. |
18 | 李易麟,南忠仁.开垦对西北干旱区荒漠土壤养分含量及主要性质的影响:以甘肃省临泽县为例[J].干旱区资源与环境,2008,22(10):147-151. |
19 | Li C H,Tang L S,Jia Z J,et al.Profile changes in the soil microbial community when desert becomes oasis[J].PloS One,2015,10(10):1-15. |
20 | Huang M,Jiang L G,Zou Y B,et al.Changes in soil microbial properties with no-tillage in Chinese cropping systems[J].Biology and Fertility of Soils,2013,49(4):373-377. |
21 | Fan X,Jin K,Li Z,et al.Soil microbial diversity under different fertilization and tillage practices:a review[J].Plant Nutrition and Fertitizer Science,2010,16(3):744-751. |
22 | Zhang Q P,Miao F H,Wang Z N,et al.Effects of long-term fertilization management practices on soil microbial biomass in China's cropland:a meta-analysis[J].Agronomy Journal,2017,109(4):1183-1195. |
23 | Xu Y,Yu W,Ma Q,et al.Assessment of the impact of different fertilization systems on soil microbial ecology[J].Journal of Soil Science,2010,41(5):1262-1269. |
24 | Zhang Y L,Dai J L,Wang R Q,et al.Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong,China[J].European Journal of Soil Biology,2008,44(1):84-91. |
25 | Bastida F,Torres I F,Romero-Trigueros C,et al.Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions[J].Soil Biology & Biochemistry,2017,104:226-237. |
26 | Ibekwe A M,Gonzalez-Rubio A,Suarez D L.Impact of treated wastewater for irrigation on soil microbial communities[J].Science of the Total Environment,2018,622:1603-1610. |
27 | Li Y J,Chen X,Shamsi I H,et al.Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J].Pedosphere,2012,22(5):661-672. |
28 | 李晨华,李彦,谢静霞,等.荒漠-绿洲土壤微生物群落组成与其活性对比[J].生态学报,2007,27(8):3391-3399. |
29 | 张威,章高森,刘光琇,等.腾格里沙漠东南缘可培养微生物群落数量与结构特征[J].生态学报,2012(2):567-577. |
30 | Ding G C,Piceno Y M,Heuer H,et al.Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem[J].PLoS One,2013,8(3):1-10. |
31 | Li C,Tang L,Jia Z,et al.Profile changes in the soil microbial community when desert becomes oasis[J].PLoS One,2015,10(10):1-15. |
32 | K?berl M,Henry M,Elshahat M R,et al.Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health[J].PLoS One,2011,6(9):1-9. |
33 | Li F R,Liu J L,Ren W,et al.Land-use change alters patterns of soil biodiversity in arid lands of northwestern China[J].Plant and Soil,2018,428(1/2):371-388. |
34 | 李婷,张威,刘光琇,等.荒漠土壤微生物群落结构特征研究进展[J].中国沙漠,2018,38(2):329-338. |
35 | Ling H B,Guo B,Xu H L,et al.Configuration of water resources for a typical river basin in an arid region of China based on the ecological water requirements (EWRs) of desert riparian vegetation[J].Global and Planetary Change,2014,122:292-304. |
36 | Jones D L,Willett V B.Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J].Soil Biology & Biochemistry,2006,38(5):991-999. |
37 | 牛百成,赵成义,冯广龙,等.秸秆还田对绿洲棉田土壤CO2时空分布的影响[J].干旱区研究,2017,34(4):75-83. |
38 | 王勇,赵成义.不同水肥条件对绿洲农田土壤N2O排放的影响[J].干旱区研究,2018,35(4):938-944. |
39 | Angel R,Pasternak Z,Soares M I M,et al.Active and total prokaryotic communities in dryland soils[J].Fems Microbiology Ecology,2013,86(1):130-138. |
40 | Arenz B E,Blanchette R A.Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula,Ross Sea Region and McMurdo Dry Valleys[J].Soil Biology & Biochemistry,2011,43(2):308-315. |
41 | Hu Y G,Zhang Z S,Huang L,et al.Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence[J].Geoderma,2019,347:126-134. |
42 | Rath K M,Rousk J.Salt effects on the soil microbial decomposer community and their role in organic carbon cycling:a review[J].Soil Biology & Biochemistry,2015,81:108-123. |
43 | Oren A.Thermodynamic limits to microbial life at high salt concentrations[J].Environmental Microbiology,2011,13(8):1908-1923. |
44 | Lester E D,Satomi M,Ponce A.Microflora of extreme arid Atacama Desert soils[J].Soil Biology & Biochemistry,2007,39(2):704-708. |
45 | Chanal A,Chapon V,Benzerara K,et al.The desert of Tataouine:an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria[J].Environmental Microbiology,2006,8(3):514-525. |
46 | Bhatnagar A,Bhatnagar M.Microbial diversity in desert ecosystems[J].Current Science,2005,89(1):91-100. |
47 | An S,Couteau C,Luo F,et al.Bacterial diversity of surface sand samples from the Gobi and Taklamaken Deserts[J].Microbial Ecology,2013,66(4):850-860. |
48 | Prestel E,Salamitou S,Dubow M S.An examination of the bacteriophages and bacteria of the Namib desert[J].Journal of Microbiology,2008,46(4):364-372. |
49 | Goncalves V N,Cantrell C L,Wedge D E,et al.Fungi associated with rocks of the Atacama Desert:taxonomy,distribution,diversity,ecology and bioprospection for bioactive compounds[J].Environmental Microbiology,2016,18(1):232-245. |
50 | Grishkan I,Nevo E.Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area,central Negev Desert,Israel[J].Fungal Ecology,2010,3(4):326-337. |
51 | 贾美清,黄静,孟元,等.内蒙古荒漠草原土壤可培养真菌的群落结构和空间分布分析[J].草地学报,2017,25(2):315-321. |
52 | Fierer N,Bradford M A,Jackson R B.Toward an ecological classification of soil bacteria[J].Ecology,2007,88(6):1354-1364. |
53 | Ben-David E A,Zaady E,Sher Y,et al.Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses[J].Fems Microbiology Ecology,2011,76(3):492-503. |
54 | Frossard A,Ramond J-B,Seely M,et al.Water regime history drives responses of soil Namib Desert microbial communities to wetting events[J].Scientific Reports,2015,5(1):1-13. |
/
〈 |
|
〉 |