Journal of Desert Research ›› 2021, Vol. 41 ›› Issue (6): 126-137.DOI: 10.7522/j.issn.1000-694X.2021.00079
Yani Wang1,2(), Yigang Hu1(
), Zengru Wang1, Changsheng Li1,2
Received:
2021-04-09
Revised:
2021-06-29
Online:
2021-11-20
Published:
2021-12-17
Contact:
Yigang Hu
CLC Number:
Yani Wang, Yigang Hu, Zengru Wang, Changsheng Li. Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis[J]. Journal of Desert Research, 2021, 41(6): 126-137.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2021.00079
指标 | 棉田FS | 荒漠ND |
---|---|---|
植被盖度/% | 97.3(0.7)a | 46.7(4.4)b |
地上生物量/(g·m-2) | 1973.2(99.1)a | 392.8(83.0)b |
物种丰富度 | 1(0)b | 3(0)a |
pH值 | 8.2(0.2) | 8.1(0.1) |
电导率/(μS·cm-1) | 18.3(2.2)b | 819.3(134.1)a |
土壤含水率/% | 13.0(2.1) | 10.5(1.6) |
土壤总有机碳/% | 2.1(0.07) | 2.0(0.02) |
土壤全氮/% | 0.02(0.001) | 0.03(0.001) |
土壤全磷/% | 0.9(0.02)a | 0.8(0.01)b |
土壤有效磷/(g·kg-1) | 25.6(4.03)a | 2.0(0.90)b |
土壤速效钾/(mg·kg-1) | 157.0(12.5) | 177.7(9.8) |
可溶性有机碳/(mg·kg-1) | 11.2(3.2) | 4.4(1.4) |
可溶性有机氮/(mg·kg-1) | 23.8(5.6) | 80.6(39.8) |
硝态氮/(mg·kg-1) | 8.8(3.6) | 8.1(2.0) |
氨态氮/(mg·kg-1) | 0.1(0.01) | 0.1(0.03) |
Table 1 Vegetation community and soil properties of farmland and desert
指标 | 棉田FS | 荒漠ND |
---|---|---|
植被盖度/% | 97.3(0.7)a | 46.7(4.4)b |
地上生物量/(g·m-2) | 1973.2(99.1)a | 392.8(83.0)b |
物种丰富度 | 1(0)b | 3(0)a |
pH值 | 8.2(0.2) | 8.1(0.1) |
电导率/(μS·cm-1) | 18.3(2.2)b | 819.3(134.1)a |
土壤含水率/% | 13.0(2.1) | 10.5(1.6) |
土壤总有机碳/% | 2.1(0.07) | 2.0(0.02) |
土壤全氮/% | 0.02(0.001) | 0.03(0.001) |
土壤全磷/% | 0.9(0.02)a | 0.8(0.01)b |
土壤有效磷/(g·kg-1) | 25.6(4.03)a | 2.0(0.90)b |
土壤速效钾/(mg·kg-1) | 157.0(12.5) | 177.7(9.8) |
可溶性有机碳/(mg·kg-1) | 11.2(3.2) | 4.4(1.4) |
可溶性有机氮/(mg·kg-1) | 23.8(5.6) | 80.6(39.8) |
硝态氮/(mg·kg-1) | 8.8(3.6) | 8.1(2.0) |
氨态氮/(mg·kg-1) | 0.1(0.01) | 0.1(0.03) |
指数 | 细菌 | 古菌 | 真菌 | |||||
---|---|---|---|---|---|---|---|---|
荒漠ND | 棉田FS | 荒漠ND | 棉田FS | 荒漠ND | 棉田FS | |||
Richness | 345(176)b | 1331(46)a | 448(46) | 462(65) | 830(265) | 664(50) | ||
Shannon | 2.1(1.0)b | 5.5(0.05)a | 4.8(0.1)a | 3.8(0.2)b | 5.1(0.5) | 3.7(0.5) | ||
Simpson | 0.4(0.2) | 0.02(0.01) | 0.02(0.01) | 0.11(0.03) | 0.03(0.02) | 0.1(0.06) | ||
Ace | 392.6(193.6)b | 1527.1(35.3)a | 463.8(51.2) | 506.0(56.4) | 879.5(271.9) | 711.2(29.6) | ||
Chao1 | 385.0(193.7)b | 1518.6(30.2)a | 467.1(51.3) | 507.8(55.4) | 880.0(275.4) | 717.0(24.3) | ||
PD | 41.2(13.4)b | 112.6(3.5)a | 21.1(2.7) | 48.7(11.8) | 219.5(89.7) | 138.2(8.7) |
Table 2 The diversity index of soil microbial communities
指数 | 细菌 | 古菌 | 真菌 | |||||
---|---|---|---|---|---|---|---|---|
荒漠ND | 棉田FS | 荒漠ND | 棉田FS | 荒漠ND | 棉田FS | |||
Richness | 345(176)b | 1331(46)a | 448(46) | 462(65) | 830(265) | 664(50) | ||
Shannon | 2.1(1.0)b | 5.5(0.05)a | 4.8(0.1)a | 3.8(0.2)b | 5.1(0.5) | 3.7(0.5) | ||
Simpson | 0.4(0.2) | 0.02(0.01) | 0.02(0.01) | 0.11(0.03) | 0.03(0.02) | 0.1(0.06) | ||
Ace | 392.6(193.6)b | 1527.1(35.3)a | 463.8(51.2) | 506.0(56.4) | 879.5(271.9) | 711.2(29.6) | ||
Chao1 | 385.0(193.7)b | 1518.6(30.2)a | 467.1(51.3) | 507.8(55.4) | 880.0(275.4) | 717.0(24.3) | ||
PD | 41.2(13.4)b | 112.6(3.5)a | 21.1(2.7) | 48.7(11.8) | 219.5(89.7) | 138.2(8.7) |
Fig.2 Venn plot and NMDS at the OUT level and relative abundance at the phylum level of different soil microbial communities (Bacteria: A, D and G; Archaea: B, E and H; Fungi: C, F and I)
指标 | 细菌 | 古菌 | 真菌 | |||||
---|---|---|---|---|---|---|---|---|
r值 | P值 | r值 | P值 | r值 | P值 | |||
植被盖度 | 0.481 | 0.075 | 0.871 | 0.004 | 0.375 | 0.098 | ||
地上生物量 | 0.446 | 0.057 | 0.807 | 0.011 | 0.352 | 0.067 | ||
物种丰富度 | 0.653 | 0.092 | 0.780 | 0.044 | 0.550 | 0.055 | ||
pH值 | 0.020 | 0.985 | 0.136 | 0.726 | 0.424 | 0.088 | ||
电导率 | -0.696 | 0.001 | 0.712 | 0.114 | -0.545 | 0.039 | ||
土壤含水率 | 0.151 | 0.661 | 0.040 | 0.879 | -0.237 | 0.604 | ||
土壤总有机碳 | 0.773 | 0.003 | 0.184 | 0.383 | 0.269 | 0.445 | ||
土壤全氮 | 0.714 | 0.018 | -0.161 | 0.410 | 0.224 | 0.550 | ||
土壤全磷 | 0.631 | 0.010 | 0.568 | 0.045 | 0.508 | 0.060 | ||
土壤有效磷 | 0.361 | 0.062 | 0.808 | 0.021 | 0.213 | 0.299 | ||
土壤速效钾 | 0.037 | 0.893 | 0.327 | 0.216 | 0.162 | 0.541 | ||
可溶性有机碳 | 0.008 | 0.983 | -0.007 | 0.989 | 0.028 | 0.970 | ||
可溶性有机氮 | -0.233 | 0.333 | 0.230 | 0.347 | -0.211 | 0.549 | ||
硝态氮 | 0.454 | 0.089 | -0.234 | 0.222 | -0.050 | 0.930 | ||
氨态氮 | -0.255 | 0.536 | 0.095 | 0.612 | -0.219 | 0.540 |
Table 3 Mantel tests for correlations of soil microbial communities with vegetation and soil properties
指标 | 细菌 | 古菌 | 真菌 | |||||
---|---|---|---|---|---|---|---|---|
r值 | P值 | r值 | P值 | r值 | P值 | |||
植被盖度 | 0.481 | 0.075 | 0.871 | 0.004 | 0.375 | 0.098 | ||
地上生物量 | 0.446 | 0.057 | 0.807 | 0.011 | 0.352 | 0.067 | ||
物种丰富度 | 0.653 | 0.092 | 0.780 | 0.044 | 0.550 | 0.055 | ||
pH值 | 0.020 | 0.985 | 0.136 | 0.726 | 0.424 | 0.088 | ||
电导率 | -0.696 | 0.001 | 0.712 | 0.114 | -0.545 | 0.039 | ||
土壤含水率 | 0.151 | 0.661 | 0.040 | 0.879 | -0.237 | 0.604 | ||
土壤总有机碳 | 0.773 | 0.003 | 0.184 | 0.383 | 0.269 | 0.445 | ||
土壤全氮 | 0.714 | 0.018 | -0.161 | 0.410 | 0.224 | 0.550 | ||
土壤全磷 | 0.631 | 0.010 | 0.568 | 0.045 | 0.508 | 0.060 | ||
土壤有效磷 | 0.361 | 0.062 | 0.808 | 0.021 | 0.213 | 0.299 | ||
土壤速效钾 | 0.037 | 0.893 | 0.327 | 0.216 | 0.162 | 0.541 | ||
可溶性有机碳 | 0.008 | 0.983 | -0.007 | 0.989 | 0.028 | 0.970 | ||
可溶性有机氮 | -0.233 | 0.333 | 0.230 | 0.347 | -0.211 | 0.549 | ||
硝态氮 | 0.454 | 0.089 | -0.234 | 0.222 | -0.050 | 0.930 | ||
氨态氮 | -0.255 | 0.536 | 0.095 | 0.612 | -0.219 | 0.540 |
1 | 王守华,王业伟,王业锦,等.浅析中国土地荒漠化生态治理现状、存在问题及对策[C]//中国治沙暨沙业学会,中国林业教育学会.《联合国防治荒漠化公约》第十三次缔约大会“防沙治沙与精准扶贫”边会论文集.2017:4-12. |
2 | 宋奇,冯春晖,高琪,等.阿拉尔垦区近三十年耕地变化及其驱动因子分析[J].国土资源遥感,2021,33(2):202-212. |
3 | 王鸣雷,史文娇.中国北方新增耕地的时空变化及驱动因素分区[J].中国农业科学,2020,53(12):2435-2449. |
4 | 韩云环,马柱国,李明星,等.2001~2010年中国区域土地利用/覆盖变化对陆面过程影响的模拟研究[J].气候与环境研究,2021,26(1):75-90. |
5 | 程维明,高晓雨,马廷,等.基于地貌分区的1990-2015年中国耕地时空特征变化分析[J].地理学报,2018,73(9):1613-1629. |
6 | 罗毅.干旱区绿洲滴灌对土壤盐碱化的长期影响[J].中国科学:地球科学,2014,44(8):1679-1688. |
7 | 席琳乔,马丽亚,王栋,等.灌溉方式对荒漠绿洲过渡带地下水与土壤理化性质的影响[J].塔里木大学学报,2020,32(1):62-70. |
8 | 王银亚,李晨华,马健.开垦对荒漠土壤微生物群落结构特征的影响[J].中国沙漠,2017,37(3):514-522. |
9 | 柳菲,陈沛源,于海超,等.民勤绿洲不同土地利用类型下土壤水盐的空间分布特征分析[J].干旱区地理,2020,43(2):406-414. |
10 | 陈小兵,杨劲松,刘春卿.新疆阿拉尔灌区土壤次生盐碱化防治及其相关问题研究[J].干旱区资源与环境,2007,21(6):168-172. |
11 | 韩桂红,吐尔逊·哈斯木,石丽.塔里木河下游土地沙漠化及其原因探讨[J].中国沙漠,2008(2):217-222. |
12 | 郭宏伟,徐海量,凌红波,等.塔里木河下游耕地扩张与天然植被退化的定量关系初探[J].干旱地区农业研究,2018,36(2):226-233. |
13 | Schloter M,Nannipieri P,Sorensen S J,et al.Microbial indicators for soil quality[J].Biology and Fertility of Soils,2018,54(1):1-10. |
14 | Zhang K,Shi Y,Cui X,et al.Salinity Is a key determinant for soil microbial communities in a desert ecosystem[J].Msystems,2019,4(1):1-11. |
15 | Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al.Increasing aridity reduces soil microbial diversity and abundance in global drylands[J].Proceedings of the National Academy of Sciences,2015,112(51):15684-15689. |
16 | Delgado-Baquerizo M,Oliverio A M,Brewer T E,et al.A global atlas of the dominant bacteria found in soil[J].Science,2018,359(6373):320-325. |
17 | Wang Z R,Liu Y B,Zhao L N,et al.Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem[J].Peerj,2019,7:1-21. |
18 | 李易麟,南忠仁.开垦对西北干旱区荒漠土壤养分含量及主要性质的影响:以甘肃省临泽县为例[J].干旱区资源与环境,2008,22(10):147-151. |
19 | Li C H,Tang L S,Jia Z J,et al.Profile changes in the soil microbial community when desert becomes oasis[J].PloS One,2015,10(10):1-15. |
20 | Huang M,Jiang L G,Zou Y B,et al.Changes in soil microbial properties with no-tillage in Chinese cropping systems[J].Biology and Fertility of Soils,2013,49(4):373-377. |
21 | Fan X,Jin K,Li Z,et al.Soil microbial diversity under different fertilization and tillage practices:a review[J].Plant Nutrition and Fertitizer Science,2010,16(3):744-751. |
22 | Zhang Q P,Miao F H,Wang Z N,et al.Effects of long-term fertilization management practices on soil microbial biomass in China's cropland:a meta-analysis[J].Agronomy Journal,2017,109(4):1183-1195. |
23 | Xu Y,Yu W,Ma Q,et al.Assessment of the impact of different fertilization systems on soil microbial ecology[J].Journal of Soil Science,2010,41(5):1262-1269. |
24 | Zhang Y L,Dai J L,Wang R Q,et al.Effects of long-term sewage irrigation on agricultural soil microbial structural and functional characterizations in Shandong,China[J].European Journal of Soil Biology,2008,44(1):84-91. |
25 | Bastida F,Torres I F,Romero-Trigueros C,et al.Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions[J].Soil Biology & Biochemistry,2017,104:226-237. |
26 | Ibekwe A M,Gonzalez-Rubio A,Suarez D L.Impact of treated wastewater for irrigation on soil microbial communities[J].Science of the Total Environment,2018,622:1603-1610. |
27 | Li Y J,Chen X,Shamsi I H,et al.Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil[J].Pedosphere,2012,22(5):661-672. |
28 | 李晨华,李彦,谢静霞,等.荒漠-绿洲土壤微生物群落组成与其活性对比[J].生态学报,2007,27(8):3391-3399. |
29 | 张威,章高森,刘光琇,等.腾格里沙漠东南缘可培养微生物群落数量与结构特征[J].生态学报,2012(2):567-577. |
30 | Ding G C,Piceno Y M,Heuer H,et al.Changes of soil bacterial diversity as a consequence of agricultural land use in a semi-arid ecosystem[J].PLoS One,2013,8(3):1-10. |
31 | Li C,Tang L,Jia Z,et al.Profile changes in the soil microbial community when desert becomes oasis[J].PLoS One,2015,10(10):1-15. |
32 | Köberl M,Henry M,Elshahat M R,et al.Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health[J].PLoS One,2011,6(9):1-9. |
33 | Li F R,Liu J L,Ren W,et al.Land-use change alters patterns of soil biodiversity in arid lands of northwestern China[J].Plant and Soil,2018,428(1/2):371-388. |
34 | 李婷,张威,刘光琇,等.荒漠土壤微生物群落结构特征研究进展[J].中国沙漠,2018,38(2):329-338. |
35 | Ling H B,Guo B,Xu H L,et al.Configuration of water resources for a typical river basin in an arid region of China based on the ecological water requirements (EWRs) of desert riparian vegetation[J].Global and Planetary Change,2014,122:292-304. |
36 | Jones D L,Willett V B.Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J].Soil Biology & Biochemistry,2006,38(5):991-999. |
37 | 牛百成,赵成义,冯广龙,等.秸秆还田对绿洲棉田土壤CO2时空分布的影响[J].干旱区研究,2017,34(4):75-83. |
38 | 王勇,赵成义.不同水肥条件对绿洲农田土壤N2O排放的影响[J].干旱区研究,2018,35(4):938-944. |
39 | Angel R,Pasternak Z,Soares M I M,et al.Active and total prokaryotic communities in dryland soils[J].Fems Microbiology Ecology,2013,86(1):130-138. |
40 | Arenz B E,Blanchette R A.Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula,Ross Sea Region and McMurdo Dry Valleys[J].Soil Biology & Biochemistry,2011,43(2):308-315. |
41 | Hu Y G,Zhang Z S,Huang L,et al.Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence[J].Geoderma,2019,347:126-134. |
42 | Rath K M,Rousk J.Salt effects on the soil microbial decomposer community and their role in organic carbon cycling:a review[J].Soil Biology & Biochemistry,2015,81:108-123. |
43 | Oren A.Thermodynamic limits to microbial life at high salt concentrations[J].Environmental Microbiology,2011,13(8):1908-1923. |
44 | Lester E D,Satomi M,Ponce A.Microflora of extreme arid Atacama Desert soils[J].Soil Biology & Biochemistry,2007,39(2):704-708. |
45 | Chanal A,Chapon V,Benzerara K,et al.The desert of Tataouine:an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria[J].Environmental Microbiology,2006,8(3):514-525. |
46 | Bhatnagar A,Bhatnagar M.Microbial diversity in desert ecosystems[J].Current Science,2005,89(1):91-100. |
47 | An S,Couteau C,Luo F,et al.Bacterial diversity of surface sand samples from the Gobi and Taklamaken Deserts[J].Microbial Ecology,2013,66(4):850-860. |
48 | Prestel E,Salamitou S,Dubow M S.An examination of the bacteriophages and bacteria of the Namib desert[J].Journal of Microbiology,2008,46(4):364-372. |
49 | Goncalves V N,Cantrell C L,Wedge D E,et al.Fungi associated with rocks of the Atacama Desert:taxonomy,distribution,diversity,ecology and bioprospection for bioactive compounds[J].Environmental Microbiology,2016,18(1):232-245. |
50 | Grishkan I,Nevo E.Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area,central Negev Desert,Israel[J].Fungal Ecology,2010,3(4):326-337. |
51 | 贾美清,黄静,孟元,等.内蒙古荒漠草原土壤可培养真菌的群落结构和空间分布分析[J].草地学报,2017,25(2):315-321. |
52 | Fierer N,Bradford M A,Jackson R B.Toward an ecological classification of soil bacteria[J].Ecology,2007,88(6):1354-1364. |
53 | Ben-David E A,Zaady E,Sher Y,et al.Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses[J].Fems Microbiology Ecology,2011,76(3):492-503. |
54 | Frossard A,Ramond J-B,Seely M,et al.Water regime history drives responses of soil Namib Desert microbial communities to wetting events[J].Scientific Reports,2015,5(1):1-13. |
[1] | Hangyu Yang, Yanmei Liu, Guangyuan Luo, Fenglian Liu. Effects of bacterial-feeding nematodes on soil microbial biomass under biocrusts in desert areas [J]. Journal of Desert Research, 2021, 41(6): 120-125. |
[2] | Jianhua Xiao, Jianhua Si, Chun Liu, Xuejun Li, Haiyang Xi, Tengfei Yu, Chengqi Zhang, Chunyan Zhao, Meng Zhu, Bing Jia. Concept, connotation and development model of Desert Energy Ecosphere [J]. Journal of Desert Research, 2021, 41(5): 11-20. |
[3] | Qimin Ma, Haibing Wang, Xiaopeng Jia. The radiation characteristics of artificial Caragana korshinskii shrub land in the Hobq Desert, China [J]. Journal of Desert Research, 2021, 41(5): 43-50. |
[4] | Kailu Liu, Xinping Wu, Yongqiang Liu, Mamtimin Ali, Fan Yang, Qing He. Estimation of hourly surface net radiation in Taklimakan Desert based on multi-source remote sensing data and reanalysis data [J]. Journal of Desert Research, 2021, 41(5): 51-61. |
[5] | Xiaohui Ma, Jiangli Pang, Xiaokang Liu, Dan Ding, Xiaoxiao Yue, Feifei Jia. Early and Middle Holocene climate change inferred by Wayaogou Section in the Southeastern Mu Us Desert [J]. Journal of Desert Research, 2021, 41(5): 71-80. |
[6] | Yonghong Feng, Rentao Liu, Jixian Liu, Jiayu Jiang, Yanjiao Bai, Zhixia Guo, Wenfan Wang, Anning Zhang. Distribution characteristics of arthropod community structure in Artemisia ordosica shrub canopy in desert area [J]. Journal of Desert Research, 2021, 41(5): 94-102. |
[7] | Xiaomei Zhang, Heling Jin, Bing Liu. Environment changes in the Hobq Desert since the Last Glacial Maximum [J]. Journal of Desert Research, 2021, 41(5): 81-93. |
[8] | Guangyin Hu, Zhibao Dong, Junfeng Lu, Linhai Yang, Weige Nan, Fengjun Xiao. Spatial pattern of aeolian desertification and its causes in the Yellow River catchment [J]. Journal of Desert Research, 2021, 41(4): 213-224. |
[9] | Yongchun Hua, Xiuzhi Ma, Bilige Siqin. Spatial and temporal characteristics of precipitation utilization efficiency of desert steppe vegetation in Inner Mongolia [J]. Journal of Desert Research, 2021, 41(4): 51-58. |
[10] | Shuo Dong, Alamusa, Qun Ma, Zhimin Liu. The role and potential application of arbuscular mycorrhizal fungi in preventing desertification [J]. Journal of Desert Research, 2021, 41(4): 70-78. |
[11] | Ning Li, Hai Zhou, Heng Ren, Peifang Chong, Guopeng Chen. Water sources of Haloxylon ammodendron under different groundwater depths [J]. Journal of Desert Research, 2021, 41(4): 79-86. |
[12] | Zeyu Teng, Shengchun Xiao, Xiaohong Chen, Chao Han. The soil bacterial condition beneath five shrub species in the central Alxa [J]. Journal of Desert Research, 2021, 41(4): 34-44. |
[13] | Yulong Ren, Yi Li, Hong Li, Jing Wu, Yuanpu Liu. Application of surface energy balance equation in simulation of surface temperature in Xinjiang, China [J]. Journal of Desert Research, 2021, 41(3): 137-146. |
[14] | Huan Yang, Yin Wang, Jianming Wang, Yanguo Xia, Jingwen Li, Xiaohong Jia, Bo Wu. Effects of environmental filtering and dispersal limitation on the β-diversity of plant communities in the south fringe of Kumtag Desert [J]. Journal of Desert Research, 2021, 41(3): 147-154. |
[15] | Jiliang Liu, Wenzhi Zhao, Fengrui Li, Yibin Ba. Community dynamics of ground arachnid arthropods in a gravel gobi desert of the middle of the Hexi Corridor, China [J]. Journal of Desert Research, 2021, 41(3): 155-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech