img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Effect of moss crust coverage and spatial distribution on soil wind erosion using wind tunnel experiments and simulations

  • Yali Ma ,
  • Zhiduo Wang ,
  • Jiaqiong Zhang ,
  • Yusuo Xu ,
  • Yuanyuan Li
Expand
  • 1.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation /, Northwest A & F University,Yangling 712100,Shaanxi,China
    2.College of Natural Resources and Environment, Northwest A & F University,Yangling 712100,Shaanxi,China
    3.Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100,Shaanxi,China
    4.University of Chinese Academy of Sciences,Beijing 100049,China
    5.School of Agricultural Sciences,Zhengzhou University,Zhengzhou 450001,China

Received date: 2023-02-03

  Revised date: 2023-04-12

  Online published: 2023-09-27

Abstract

Biological soil crusts (biocrusts) play an important role in wind erosion control in arid and semiarid regions. It is of great significance to clarify the influence of biocrusts on soil wind erosion and to quantify biocrust factors in wind erosion prediction models to improve the accuracy and reliability of wind erosion prediction. This study analyzed differences in wind erosion and sediment transport rates when affected by the coverage and spatial distribution of moss crust by combining wind tunnel experiments and SWEEP simulations. The results showed that: (1) Both the wind erosion and sediment transport rates decreased with increasing crust coverage, particularly at high wind speeds (15 m·s-1). The average wind erosion and sediment transport rates decreased by 98.3% and 99.3%, respectively, in wind tunnel experiments when crust coverage increased from 10% to 80%, while they decreased by 93.2% and 78.9%, respectively, according to the SWEEP simulation. (2) The wind erosion and sediment transport rates were relatively low when moss crusts were distributed in the upwind area of the experimental trays, followed by patchily distributed moss crusts, while they were the most severe when moss crusts were located in the downwind area under conditions of the same crust coverage. (3) Compared with the results of wind tunnel experiments and SWEEP simulations, the wind erosion and sediment transport rates based on the SWEEP simulation under different crust coverages were significantly (P<0.05) larger compared to those based on the wind tunnel experiments. In order to improve the accuracy of wind erosion prediction models, a quantitative expression of the effect of biocrust factors on wind erosion rates should be constructed in future research.

Cite this article

Yali Ma , Zhiduo Wang , Jiaqiong Zhang , Yusuo Xu , Yuanyuan Li . Effect of moss crust coverage and spatial distribution on soil wind erosion using wind tunnel experiments and simulations[J]. Journal of Desert Research, 2023 , 43(5) : 97 -107 . DOI: 10.7522/j.issn.1000-694X.2023.00039

References

1 张春来,宋长青,王振亭,等.土壤风蚀过程研究回顾与展望[J].地球科学进展,2018,33(1):27-41.
2 王旭洋,郭中领,常春平,等.中国北方农牧交错带土壤风蚀时空分布[J].中国沙漠,2020,40(1):12-22.
3 余沛东,陈银萍,李玉强,等.植被盖度对沙丘风沙流结构及风蚀量的影响[J].中国沙漠,2019,39(5):29-36.
4 张丙昌,武志芳,李彬.黄土高原生物土壤结皮研究进展与展望[J].土壤学报,2021,58(5):1123-1131.
5 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24.
6 包艳丽,刘左军.生物土壤结皮的研究进展[J].安徽农业科学,2011,39(8):4667-4668.
7 马月存,陈源泉,隋鹏,等.土壤风蚀影响因子与防治技术[J].生态学杂志,2006,25(11):1390-1394.
8 王雪芹,张元明,张伟民,等.古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J].冰川冻土,2004,26(5):632-638.
9 毛旭芮,杨建军,曹月娥,等.土壤结皮面积与结皮分布对风蚀影响的风洞模拟研究[J].水土保持学报,2020,34(3):1-7.
10 王渝淞.坝上地区生物结皮防治风蚀扬尘的试验研究[D].北京:北京林业大学,2019.
11 杨永胜.毛乌素沙地生物结皮对土壤水分和风蚀的影响[D].陕西杨凌:西北农林科技大学,2012.
12 闫德仁,薛英英,赵春光.沙漠生物结皮国内研究现状[J].内蒙古林业科技,2007,33(3):28-32.
13 杨永胜,邱永利,周小泉,等.毛乌素沙地人为干扰苔藓结皮的土壤水分和风蚀效应[J].水土保持通报,2015,35(1):20-24.
14 Zhang J Q, Li Y Y, Yang M Y,et al.Combined impact of moss crust coverage rates and distribution patterns on wind erosion using beryllium-7 measurements[J].Catena,2022,211:106005.
15 Zhang Y M, Wang H L, Wang X Q,et al.The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China[J].Geoderma,2006,132(3/4):441-449.
16 张加琼,张春来,王焕芝.包兰铁路沙坡头段防护体系生物土壤结皮沉积特征及其风沙环境意义[J].地理科学,2013,33(9):1117-1124.
17 李宁宁,张光辉,王浩,等.黄土丘陵沟壑区生物结皮对土壤抗蚀性能的影响[J].中国水土保持科学,2020,18(1):42-48.
18 Rodriguez-Caballero E, Stanelle T, Egerer S,et al.Global cycling and climate effects of aeolian dust controlled by biological soil crusts[J].Nature Geoscience,2022,15(6):458-463.
19 Zhang J, Zhou C H, Gui H L,et al.Biological crust in sand and dust storm source areas of asia and its impact on dust emission[J].Advances in Climate Change Research,2021,12(3):395-408.
20 Miller M E, Belote R T, Bowker M A,et al.Alternative states of a semiarid grassland ecosystem: implications for ecosystem services[J].Ecosphere,2011,2(5):1-18.
21 刘珺,郭中领,常春平,等.基于RWEQ和WEPS模型的中国北方农牧交错带潜在风蚀模拟[J].中国沙漠,2021,41(2):27-37.
22 Hagen L J, Wagner L E, Tatarko J,et al.WEPS Technical Manmul[R].Manhattan,Kansas,USA,1996.
23 Hagen L J, Wagner L E, Tatarko J,et al.WEPS 1.0 User Manual[R].Manhattan,Kansas,USA,2010.
24 王燕,王萍.风蚀预报系统(WEPS)在民勤荒漠地区的应用分析研究[J].干旱区地理,2013,36(1):109-117.
25 Hagen L J, Wagner L E, Tatarko J,et al.SWEEP User Guide[R].Manhattan,Kansas,USA,2008.
26 Zou X Y, Zhang C L, Cheng H,et al.Cogitation on developing a dynamic model of soil wind erosion[J].Science China Earth Sciences,2015,58(3):462-473.
27 Zhang J Q, Zhang C L, Chang C P,et al.Comparison of wind erosion based on measurements and SWEEP simulation:a case study in Kangbao County,Hebei Province,China[J].Soil & Tillage Research,2017,165:169-180.
28 石梦双,陈莉.基于SWEEP模型济南市典型日农用地起尘量估算[J].环境科学与技术,2015,38(8):200-205.
29 吴永胜,哈斯,李双权,等.毛乌素沙地南缘沙丘生物土壤结皮发育特征[J].水土保持学报,2010,24(5):258-261.
30 王国鹏,肖波,李胜龙,等.黄土高原水蚀风蚀交错区生物结皮的地表粗糙度特征及其影响因素[J].生态学杂志,2019,38(10):3050-3056.
31 肖巍强,董治宝,陈颢,等.生物土壤结皮对库布齐沙漠北缘土壤粒度特征的影响[J].中国沙漠,2017,37(5):970-977.
32 王仁德,李庆,常春平,等.新型平口式集沙仪对不同粒级颗粒的收集效率[J].中国沙漠,2018,38(4):734-738.
33 王媛,赵允格,姚春竹,等.黄土丘陵区生物土壤结皮表面糙度特征及影响因素[J].应用生态学报,2014,25(3):647-656.
34 闫德仁,黄海广.沙漠苔藓生物结皮层物理特征研究[J].安徽农业科学,2019,47(1):77-79.
35 吴晓旭,邹学勇,王仁德,等.毛乌素沙地不同下垫面的风沙运动特征[J].中国沙漠,2011,31(4):828-835.
36 张风宝,杨明义,李占斌.微小区土壤侵蚀试验中田口方法代替全因子设计的可行性分析[J].农业工程学报,2015,31(13):1-9.
37 王雪芹,张元明,张伟民,等.生物结皮粗糙特征:以古尔班通古特沙漠为例[J].生态学报,2011,31(14):4153-4160.
38 王雪芹,张元明,王远超,等.古尔班通古特沙漠生物结皮小尺度分异的环境特征[J].中国沙漠,2006,26(5):711-716.
39 高永,丁延龙,汪季,等.不同植物灌丛沙丘表面沉积物粒度变化及其固沙能力[J].农业工程学报,2017,33(22):135-142.
40 刘小平,董治宝.直立植被粗糙度和阻力分解的风洞实验研究[J].中国沙漠,2002,22(1):82-87.
41 Raupach M R, Gillette D A, Leys J F.The effect of roughness elements on wind erosion threshold[J].Journal of Geophysical Research:Atmospheres,1993,98(D2):3023-3029.
42 高尚玉.京津风沙源治理工程效益[M].北京:科学出版社,2012.
43 吉静怡,赵允格,杨凯,等.生物结皮分布格局对坡面流水动力特征的影响[J].应用生态学报,2021,32(3):1015-1022.
44 孙传龙,张卓栋,邱倩倩,等.基于层次分析法的锡林郭勒草地景观系统风蚀危险性分析[J].干旱区地理,2016,39(5):1036-1042.
45 孙悦超,麻硕士,陈智,等.保护性耕作农田抗风蚀效应的灰色关联分析[J].农机化研究,2008,163(11):54-56.
46 Gao L Q, Matthew A B, Sun H,et al.Linkages between biocrust development and water erosion and implications for erosion model implementation[J].Geoderma,2020,357(C):113973.
47 熊文君,徐琳,张丙昌,等.生物土壤结皮结构、功能及人工恢复技术[J].干旱区资源与环境,2021,35(2):190-195.
48 马全林,王继和,朱淑娟.降水、土壤水分和结皮对人工梭梭(Haloxylon ammodendron)林的影响[J].生态学报,2007,27(12):5057-5067.
49 乔宇,徐先英,付贵全,等.民勤绿洲边缘不同年代土壤结皮特性及对水文过程的影响[J].水土保持学报,2015,29(4):1-6.
Outlines

/