Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (5): 97-107.DOI: 10.7522/j.issn.1000-694X.2023.00039
Previous Articles Next Articles
Yali Ma1(), Zhiduo Wang2, Jiaqiong Zhang1,3(
), Yusuo Xu3,4, Yuanyuan Li5
Received:
2023-02-03
Revised:
2023-04-12
Online:
2023-09-20
Published:
2023-09-27
Contact:
Jiaqiong Zhang
CLC Number:
Yali Ma, Zhiduo Wang, Jiaqiong Zhang, Yusuo Xu, Yuanyuan Li. Effect of moss crust coverage and spatial distribution on soil wind erosion using wind tunnel experiments and simulations[J]. Journal of Desert Research, 2023, 43(5): 97-107.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00039
模型 | 结皮因子算法 | 参数含义 |
---|---|---|
RWEQ[ | Cl:黏粒含量/%;OM:有机质含量/% | |
WEPS[ | 结皮厚度/mm: 结皮盖度(m2·m-2): 结皮密度/(mg·m-3): 结皮稳定性/(ln(J·kg-1)): 结皮表面松散可蚀性物质质量/(kg·m-2): 土块、结皮或石块的覆盖比例: | Acr、Bcr:经验系数;P:融雪、喷灌和降雨量/mm;Dbko:土壤容重/(mg·m-3);Sag:团聚体稳定性/(ln(J·kg-1));Fsa:砂粒含量/(kg·kg-1);Fcl:黏粒含量/(kg·kg-1);Fcce:碳酸钙当量/(kg·kg-1);Fom:有机质含量/(kg·kg-1);Flos:结皮表面松散可蚀性物质比例/(m2·m-2);Vroc:粒径>2.0 mm土壤的体积比例/(m3·m-3);F84:无结皮覆盖区域直径<0.84 mm团聚体的覆盖比例/(m2·m-2) |
Table 1 Algorithms of crust factors in common used wind erosion models
模型 | 结皮因子算法 | 参数含义 |
---|---|---|
RWEQ[ | Cl:黏粒含量/%;OM:有机质含量/% | |
WEPS[ | 结皮厚度/mm: 结皮盖度(m2·m-2): 结皮密度/(mg·m-3): 结皮稳定性/(ln(J·kg-1)): 结皮表面松散可蚀性物质质量/(kg·m-2): 土块、结皮或石块的覆盖比例: | Acr、Bcr:经验系数;P:融雪、喷灌和降雨量/mm;Dbko:土壤容重/(mg·m-3);Sag:团聚体稳定性/(ln(J·kg-1));Fsa:砂粒含量/(kg·kg-1);Fcl:黏粒含量/(kg·kg-1);Fcce:碳酸钙当量/(kg·kg-1);Fom:有机质含量/(kg·kg-1);Flos:结皮表面松散可蚀性物质比例/(m2·m-2);Vroc:粒径>2.0 mm土壤的体积比例/(m3·m-3);F84:无结皮覆盖区域直径<0.84 mm团聚体的覆盖比例/(m2·m-2) |
界面 | 参数 | 参数设置或算法 | |
---|---|---|---|
地块 | 长/m、宽/m、方向/(°) | 1、1、0 | |
土壤性质 | 土壤层数 | 1 | 2 |
土层厚度/mm | 10 | 90 | |
砂粒含量/(mg·mg-1) | 0.75 | 0.77 | |
细粉砂含量/(mg·mg-1) | 0.14 | 0.14 | |
粉粒含量/(mg·mg-1) | 0.21 | 0.2 | |
黏粒含量/(mg·mg-1) | 0.04 | 0.03 | |
石块体积含量/(m3·m-3) | 0 | 0 | |
干容重/(g·cm-3) | 1.52 | 1.52 | |
平均团聚体密度/(mg·m-3) | 0.61 | 0.61 | |
平均干团聚体稳定性/(ln(J·kg-1)) | 0.11 | 0.11 | |
团聚体几何平均直径/mm | 0.04 | 0.04 | |
团聚体几何标准偏差/(mm·mm-1) | 1.01 | 1.01 | |
最小和最大团聚体尺寸/mm | 0.02、1.01 | 0.02、1.01 | |
凋萎系数/(mg·mg-1) | 0.03 | 0.03 | |
土壤表面状态 | 结皮盖度/(m2·m-2) | 0、0.1、0.3、0.5、0.8 | |
结皮厚度/mm | 8 | ||
结皮表面疏松物质的比例/(m2·m-2)和质量/(kg·m-2) | 0、0 | ||
结皮密度/(g·cm-3) | 0.6 | ||
结皮稳定性/(ln(J·kg-1)) | 1 | ||
随机粗糙度/mm | 7 | ||
小时地表含水量/(mg·mg-1) | 0.02 | ||
气候 | 空气密度/(kg·m-3) | 1.16 | |
风速测定高度/m | 0.6 | ||
风速测定点空气动力学粗糙度/mm | 25 | ||
运行时间间隔/min | 20 |
Table 2 Input parameters to run SWEEP
界面 | 参数 | 参数设置或算法 | |
---|---|---|---|
地块 | 长/m、宽/m、方向/(°) | 1、1、0 | |
土壤性质 | 土壤层数 | 1 | 2 |
土层厚度/mm | 10 | 90 | |
砂粒含量/(mg·mg-1) | 0.75 | 0.77 | |
细粉砂含量/(mg·mg-1) | 0.14 | 0.14 | |
粉粒含量/(mg·mg-1) | 0.21 | 0.2 | |
黏粒含量/(mg·mg-1) | 0.04 | 0.03 | |
石块体积含量/(m3·m-3) | 0 | 0 | |
干容重/(g·cm-3) | 1.52 | 1.52 | |
平均团聚体密度/(mg·m-3) | 0.61 | 0.61 | |
平均干团聚体稳定性/(ln(J·kg-1)) | 0.11 | 0.11 | |
团聚体几何平均直径/mm | 0.04 | 0.04 | |
团聚体几何标准偏差/(mm·mm-1) | 1.01 | 1.01 | |
最小和最大团聚体尺寸/mm | 0.02、1.01 | 0.02、1.01 | |
凋萎系数/(mg·mg-1) | 0.03 | 0.03 | |
土壤表面状态 | 结皮盖度/(m2·m-2) | 0、0.1、0.3、0.5、0.8 | |
结皮厚度/mm | 8 | ||
结皮表面疏松物质的比例/(m2·m-2)和质量/(kg·m-2) | 0、0 | ||
结皮密度/(g·cm-3) | 0.6 | ||
结皮稳定性/(ln(J·kg-1)) | 1 | ||
随机粗糙度/mm | 7 | ||
小时地表含水量/(mg·mg-1) | 0.02 | ||
气候 | 空气密度/(kg·m-3) | 1.16 | |
风速测定高度/m | 0.6 | ||
风速测定点空气动力学粗糙度/mm | 25 | ||
运行时间间隔/min | 20 |
风速 /(m·s-1) | 试验方法 | 拟合关系 | R2 |
---|---|---|---|
11 | SWEEP模拟 | y=-1.922x+129.95 | 0.791 |
风洞试验 | y=-0.017x+1.61 | 0.763 | |
13 | SWEEP模拟 | y=-3.766x+281.98 | 0.949 |
风洞试验 | y =-0.424x+29.92 | 0.835 | |
15 | SWEEP模拟 | y =-4.710x+381.72 | 0.982 |
风洞试验 | y =-3.906x+288.52 | 0.847 |
Table 3 Variation of wind erosion rates with change of moss crust coverage at different wind speeds
风速 /(m·s-1) | 试验方法 | 拟合关系 | R2 |
---|---|---|---|
11 | SWEEP模拟 | y=-1.922x+129.95 | 0.791 |
风洞试验 | y=-0.017x+1.61 | 0.763 | |
13 | SWEEP模拟 | y=-3.766x+281.98 | 0.949 |
风洞试验 | y =-0.424x+29.92 | 0.835 | |
15 | SWEEP模拟 | y =-4.710x+381.72 | 0.982 |
风洞试验 | y =-3.906x+288.52 | 0.847 |
Fig.7 Effect of crust spatial distribution on sediment transport rates under different moss crust coverage (Different letters indicate significant differences between different crust spatial distribution in the same wind speed (P<0.05))
Fig.8 Effect of crust spatial distribution on wind erosion rates under different moss crust coverage (Different letters indicate significant differences between different crust spatial distribution in the same wind speed (P<0.05))
变量 | 因子 | 自由度 | 均方差 | F值 | 显著性 | 贡献率/% |
---|---|---|---|---|---|---|
风蚀速率 | 风速 | 2 | 108 619 | 1 949 441 | 0.000 | 29.7 |
结皮盖度 | 3 | 39 668 | 711 945 | 0.000 | 16.3 | |
结皮空间分布 | 2 | 18 492 | 331 889 | 0.000 | 5.1 | |
风速×结皮盖度 | 6 | 28 898 | 518648 | 0.000 | 23.7 | |
风速×结皮空间分布 | 4 | 18 172 | 326 142 | 0.000 | 9.9 | |
结皮盖度×结皮空间分布 | 6 | 6 625 | 118 903 | 0.000 | 5.4 | |
风速×结皮盖度×结皮空间分布 | 12 | 6 013 | 107 923 | 0.000 | 9.9 | |
误差 | 36 | 0.056 | 0.0005 | |||
近地表输沙率 | 风速 | 2 | 33 150 | 4 959 520 | 0.000 | 20.6 |
结皮盖度 | 3 | 11 730 | 1 754 886 | 0.000 | 10.9 | |
结皮空间分布 | 2 | 12 285 | 1 838 017 | 0.000 | 7.6 | |
风速×结皮盖度 | 6 | 11 250 | 1 683 172 | 0.000 | 21.0 | |
风速×结皮空间分布 | 4 | 12 348 | 1 847 442 | 0.000 | 15.3 | |
结皮盖度×结皮空间分布 | 6 | 4 463 | 667 710 | 0.000 | 8.3 | |
风速×结皮盖度×结皮空间分布 | 12 | 4 355 | 651 489 | 0.000 | 16.2 | |
误差 | 36 | 0.007 | 0.0002 |
Table 4 Significance and percentage contribution of factors' effects on wind erosion rate and near-surface sediment transport rate based on ANOVA
变量 | 因子 | 自由度 | 均方差 | F值 | 显著性 | 贡献率/% |
---|---|---|---|---|---|---|
风蚀速率 | 风速 | 2 | 108 619 | 1 949 441 | 0.000 | 29.7 |
结皮盖度 | 3 | 39 668 | 711 945 | 0.000 | 16.3 | |
结皮空间分布 | 2 | 18 492 | 331 889 | 0.000 | 5.1 | |
风速×结皮盖度 | 6 | 28 898 | 518648 | 0.000 | 23.7 | |
风速×结皮空间分布 | 4 | 18 172 | 326 142 | 0.000 | 9.9 | |
结皮盖度×结皮空间分布 | 6 | 6 625 | 118 903 | 0.000 | 5.4 | |
风速×结皮盖度×结皮空间分布 | 12 | 6 013 | 107 923 | 0.000 | 9.9 | |
误差 | 36 | 0.056 | 0.0005 | |||
近地表输沙率 | 风速 | 2 | 33 150 | 4 959 520 | 0.000 | 20.6 |
结皮盖度 | 3 | 11 730 | 1 754 886 | 0.000 | 10.9 | |
结皮空间分布 | 2 | 12 285 | 1 838 017 | 0.000 | 7.6 | |
风速×结皮盖度 | 6 | 11 250 | 1 683 172 | 0.000 | 21.0 | |
风速×结皮空间分布 | 4 | 12 348 | 1 847 442 | 0.000 | 15.3 | |
结皮盖度×结皮空间分布 | 6 | 4 463 | 667 710 | 0.000 | 8.3 | |
风速×结皮盖度×结皮空间分布 | 12 | 4 355 | 651 489 | 0.000 | 16.2 | |
误差 | 36 | 0.007 | 0.0002 |
1 | 张春来,宋长青,王振亭,等.土壤风蚀过程研究回顾与展望[J].地球科学进展,2018,33(1):27-41. |
2 | 王旭洋,郭中领,常春平,等.中国北方农牧交错带土壤风蚀时空分布[J].中国沙漠,2020,40(1):12-22. |
3 | 余沛东,陈银萍,李玉强,等.植被盖度对沙丘风沙流结构及风蚀量的影响[J].中国沙漠,2019,39(5):29-36. |
4 | 张丙昌,武志芳,李彬.黄土高原生物土壤结皮研究进展与展望[J].土壤学报,2021,58(5):1123-1131. |
5 | 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24. |
6 | 包艳丽,刘左军.生物土壤结皮的研究进展[J].安徽农业科学,2011,39(8):4667-4668. |
7 | 马月存,陈源泉,隋鹏,等.土壤风蚀影响因子与防治技术[J].生态学杂志,2006,25(11):1390-1394. |
8 | 王雪芹,张元明,张伟民,等.古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J].冰川冻土,2004,26(5):632-638. |
9 | 毛旭芮,杨建军,曹月娥,等.土壤结皮面积与结皮分布对风蚀影响的风洞模拟研究[J].水土保持学报,2020,34(3):1-7. |
10 | 王渝淞.坝上地区生物结皮防治风蚀扬尘的试验研究[D].北京:北京林业大学,2019. |
11 | 杨永胜.毛乌素沙地生物结皮对土壤水分和风蚀的影响[D].陕西杨凌:西北农林科技大学,2012. |
12 | 闫德仁,薛英英,赵春光.沙漠生物结皮国内研究现状[J].内蒙古林业科技,2007,33(3):28-32. |
13 | 杨永胜,邱永利,周小泉,等.毛乌素沙地人为干扰苔藓结皮的土壤水分和风蚀效应[J].水土保持通报,2015,35(1):20-24. |
14 | Zhang J Q, Li Y Y, Yang M Y,et al.Combined impact of moss crust coverage rates and distribution patterns on wind erosion using beryllium-7 measurements[J].Catena,2022,211:106005. |
15 | Zhang Y M, Wang H L, Wang X Q,et al.The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China[J].Geoderma,2006,132(3/4):441-449. |
16 | 张加琼,张春来,王焕芝.包兰铁路沙坡头段防护体系生物土壤结皮沉积特征及其风沙环境意义[J].地理科学,2013,33(9):1117-1124. |
17 | 李宁宁,张光辉,王浩,等.黄土丘陵沟壑区生物结皮对土壤抗蚀性能的影响[J].中国水土保持科学,2020,18(1):42-48. |
18 | Rodriguez-Caballero E, Stanelle T, Egerer S,et al.Global cycling and climate effects of aeolian dust controlled by biological soil crusts[J].Nature Geoscience,2022,15(6):458-463. |
19 | Zhang J, Zhou C H, Gui H L,et al.Biological crust in sand and dust storm source areas of asia and its impact on dust emission[J].Advances in Climate Change Research,2021,12(3):395-408. |
20 | Miller M E, Belote R T, Bowker M A,et al.Alternative states of a semiarid grassland ecosystem: implications for ecosystem services[J].Ecosphere,2011,2(5):1-18. |
21 | 刘珺,郭中领,常春平,等.基于RWEQ和WEPS模型的中国北方农牧交错带潜在风蚀模拟[J].中国沙漠,2021,41(2):27-37. |
22 | Hagen L J, Wagner L E, Tatarko J,et al.WEPS Technical Manmul[R].Manhattan,Kansas,USA,1996. |
23 | Hagen L J, Wagner L E, Tatarko J,et al.WEPS 1.0 User Manual[R].Manhattan,Kansas,USA,2010. |
24 | 王燕,王萍.风蚀预报系统(WEPS)在民勤荒漠地区的应用分析研究[J].干旱区地理,2013,36(1):109-117. |
25 | Hagen L J, Wagner L E, Tatarko J,et al.SWEEP User Guide[R].Manhattan,Kansas,USA,2008. |
26 | Zou X Y, Zhang C L, Cheng H,et al.Cogitation on developing a dynamic model of soil wind erosion[J].Science China Earth Sciences,2015,58(3):462-473. |
27 | Zhang J Q, Zhang C L, Chang C P,et al.Comparison of wind erosion based on measurements and SWEEP simulation:a case study in Kangbao County,Hebei Province,China[J].Soil & Tillage Research,2017,165:169-180. |
28 | 石梦双,陈莉.基于SWEEP模型济南市典型日农用地起尘量估算[J].环境科学与技术,2015,38(8):200-205. |
29 | 吴永胜,哈斯,李双权,等.毛乌素沙地南缘沙丘生物土壤结皮发育特征[J].水土保持学报,2010,24(5):258-261. |
30 | 王国鹏,肖波,李胜龙,等.黄土高原水蚀风蚀交错区生物结皮的地表粗糙度特征及其影响因素[J].生态学杂志,2019,38(10):3050-3056. |
31 | 肖巍强,董治宝,陈颢,等.生物土壤结皮对库布齐沙漠北缘土壤粒度特征的影响[J].中国沙漠,2017,37(5):970-977. |
32 | 王仁德,李庆,常春平,等.新型平口式集沙仪对不同粒级颗粒的收集效率[J].中国沙漠,2018,38(4):734-738. |
33 | 王媛,赵允格,姚春竹,等.黄土丘陵区生物土壤结皮表面糙度特征及影响因素[J].应用生态学报,2014,25(3):647-656. |
34 | 闫德仁,黄海广.沙漠苔藓生物结皮层物理特征研究[J].安徽农业科学,2019,47(1):77-79. |
35 | 吴晓旭,邹学勇,王仁德,等.毛乌素沙地不同下垫面的风沙运动特征[J].中国沙漠,2011,31(4):828-835. |
36 | 张风宝,杨明义,李占斌.微小区土壤侵蚀试验中田口方法代替全因子设计的可行性分析[J].农业工程学报,2015,31(13):1-9. |
37 | 王雪芹,张元明,张伟民,等.生物结皮粗糙特征:以古尔班通古特沙漠为例[J].生态学报,2011,31(14):4153-4160. |
38 | 王雪芹,张元明,王远超,等.古尔班通古特沙漠生物结皮小尺度分异的环境特征[J].中国沙漠,2006,26(5):711-716. |
39 | 高永,丁延龙,汪季,等.不同植物灌丛沙丘表面沉积物粒度变化及其固沙能力[J].农业工程学报,2017,33(22):135-142. |
40 | 刘小平,董治宝.直立植被粗糙度和阻力分解的风洞实验研究[J].中国沙漠,2002,22(1):82-87. |
41 | Raupach M R, Gillette D A, Leys J F.The effect of roughness elements on wind erosion threshold[J].Journal of Geophysical Research:Atmospheres,1993,98(D2):3023-3029. |
42 | 高尚玉.京津风沙源治理工程效益[M].北京:科学出版社,2012. |
43 | 吉静怡,赵允格,杨凯,等.生物结皮分布格局对坡面流水动力特征的影响[J].应用生态学报,2021,32(3):1015-1022. |
44 | 孙传龙,张卓栋,邱倩倩,等.基于层次分析法的锡林郭勒草地景观系统风蚀危险性分析[J].干旱区地理,2016,39(5):1036-1042. |
45 | 孙悦超,麻硕士,陈智,等.保护性耕作农田抗风蚀效应的灰色关联分析[J].农机化研究,2008,163(11):54-56. |
46 | Gao L Q, Matthew A B, Sun H,et al.Linkages between biocrust development and water erosion and implications for erosion model implementation[J].Geoderma,2020,357(C):113973. |
47 | 熊文君,徐琳,张丙昌,等.生物土壤结皮结构、功能及人工恢复技术[J].干旱区资源与环境,2021,35(2):190-195. |
48 | 马全林,王继和,朱淑娟.降水、土壤水分和结皮对人工梭梭(Haloxylon ammodendron)林的影响[J].生态学报,2007,27(12):5057-5067. |
49 | 乔宇,徐先英,付贵全,等.民勤绿洲边缘不同年代土壤结皮特性及对水文过程的影响[J].水土保持学报,2015,29(4):1-6. |
[1] | Shuyi Chen, Weimin Zhang, Shaoxiu Ma, Lihai Tan, Linhao Liang. Study on dynamic mechanism of dust emission from gobi based a portable wind tunnel experiment atop the Mogao Grottoes, Dunhuang, China [J]. Journal of Desert Research, 2023, 43(2): 216-225. |
[2] | Yue Zhang, Siyu Chen, Hongru Bi, Jiahui Cao, Yuan Luo, Yongqi Gong, Yu Chen. Characteristics and parameterization of farmland soil wind erosion in arid and semi-arid areas of China: progress and challenges [J]. Journal of Desert Research, 2022, 42(3): 105-117. |
[3] | Fanmin Mei, Shan Wang, Lixuan Tang, Jin Su. An improved scheme for modeling wind friction threshold velocity dependent on the aspect ratio of individual element and aerodynamic roughness length [J]. Journal of Desert Research, 2020, 40(6): 98-104. |
[4] | Liqiang Kang, Caiyun Li, Junjie Zhang, Xueyong Zou. Characteristics of instantaneous surface shear stress distribution at flexible plant surface [J]. Journal of Desert Research, 2020, 40(5): 49-56. |
[5] | Kang Liqiang, Yang Zhicheng, Zhang Junjie, Zou Xueyong, Zhang Wen. Wind tunnel simulation for comparison of wind velocity profile characteristics at two flexible plant surfaces [J]. Journal of Desert Research, 2020, 40(2): 43-49. |
[6] | Kang Liqiang, Gao Yongqing, Zhang Wen, Zou Xueyong. Characteristics of instantaneous sediment transport in steady aeolian sand transport [J]. Journal of Desert Research, 2020, 40(1): 166-172. |
[7] | Li Xiqian, Zhang Yuanming. Grey Relation Analysis on Soil Fertility as Influenced by Edge Effects of Moss Crust Patch in a Temperate Desert [J]. Journal of Desert Research, 2019, 39(3): 17-24. |
[8] | Li Jinrong, Guo Jianying, Zhao Naqi, Zhang Zhijie, Liu Tiejun, Wu Qiang. The Spatial and Temporal Variability of Sand Erosion and Its Influences Factors across A Coastal Dune in Ulan Buh Desert, China [J]. Journal of Desert Research, 2018, 38(5): 928-935. |
[9] | Kang Liqiang, Zhang Junjie, Zou Xueyong, Zhang Chunlai, Cheng Hong. Characteristics of Sand Transport during Initiation Process of Aeolian Sand Transport [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(6): 1051-1058. |
[10] | Han Caixia, Zhang Bingchang, Zhang Yuanming, Tai Fengjiao, Zhang Chi, Shao Hua. Diversity of Culturable Fungi from the Moss Crusts Growing in the Southern Gurbantunggut Desert [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(4): 1050-1055. |
[11] | Sun Na, Li Shengyu, Ma Xuexi, Wang Haifeng, Xu Xinwen. Wind Tunnel Experiment on the Anti-erosion Benefits of Gravel-size Cemented Bodies from Inter-dune Corridors in the Hinterland of the Taklimakan Desert [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(3): 575-580. |
[12] | JI Xue-hua1,2, ZHANG Yuan-ming2, TAO Ye2, ZHOU Xiao-bing2, ZHANG Jing2. Size Characteristics of the Moss Crust Patches and Its Relationship to the Environmental Factors in the Gurbantunggut Desert [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(6): 1803-1809. |
[13] | . A Wind Tunnel Experiment of Aeolian Sand Transport over Wetted Coastal Sand Surface [J]. JOURNAL OF DESERT RESEARCH, 2012, 32(6): 1512-1521. |
[14] | TAN Li-hai, ZHANG Wei-min, AN Zhi-shan, LI Jian-guo. Response of Wind Velocity Gradient at Boundary Layer to Gravel Coverage [J]. JOURNAL OF DESERT RESEARCH, 2012, 32(6): 1522-1527. |
[15] | LI Jian-guo, QU Jian-jun, LI Fang, AN Zhi-shan, HAN Qing-jie, NIU Qing-he, LI Guo-shuai, TAN Li-hai. Wind Tunnel Simulation on Flow Fields around Different Types of Sand Dikes [J]. JOURNAL OF DESERT RESEARCH, 2012, 32(2): 291-299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech