Estimation of aboveground biomass of Haloxylon ammodendron based on UAV multi-source data
Received date: 2023-12-20
Revised date: 2024-02-16
Online published: 2024-10-15
As one of the important components of desert ecosystem, the aboveground biomass (AGB) of Haloxylon ammodendron reflects the health of community and ecosystem to a certain extent, which is of great significance to the carbon cycle of desert ecosystem. In this paper, H. ammodendron in Ulan Buh Desert was taken as the research object. Based on the plant height (H), crown width (C), visible light vegetation index (VI) extracted by UAV laser radar and the three characteristic indexes of the combination of the two, multiple stepwise regression (MSR), principal component regression (PCR) and partial least squares regression (PLSR) were used to estimate the above-ground biomass of H. ammodendron. The determination coefficient R2 and root mean square error RMSE were used for evaluation. The results showed that: (1) The accuracy of plant height (R2=0.85, RMSE=0.32 m) and crown width (R2=0.80, RMSE=0.73 m) extracted from UAV LiDAR point cloud data was high. (2) MSR, PCR and PLSR models had good fitting effects, and R2 was greater than 0.8, while the root mean square error of PLSR model was the smallest (2.86 kg·plant-1), which could be used as the optimal model for AGB estimation of H. ammodendron. The results show that the use of UAV LiDAR data can effectively extract the single tree parameter factors (H, C) of H. ammodendron, and carry out the estimation of aboveground biomass of low vegetation in desert.
Lili Bao , Jinrong Li , Zhaoen Han , Yue Liu , Haodong Shan . Estimation of aboveground biomass of Haloxylon ammodendron based on UAV multi-source data[J]. Journal of Desert Research, 2024 , 44(5) : 50 -59 . DOI: 10.7522/j.issn.1000-694X.2024.00032
1 | 刘媖心.中国沙漠植物志[M].北京:科学出版社,1985. |
2 | 张奕,肖辉杰,辛智鸣,等.乌兰布和沙区典型灌木防风阻沙效益[J].中国水土保持科学(中英文),2021,19(1):87-96. |
3 | 李映坤,李锦荣,董雷,等.乌兰布和沙漠周边典型植物群落防风阻沙效果[J].中国沙漠,2022,42(6):65-73. |
4 | Búrquez A, Martínez-Yrízar A, Nú?ez S,et al.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting[J].Journal of Arid Environments,2010,74(10):1240-1247. |
5 | Houghton A R, Forrest H, Goetz S J.Importance of biomass in the global carbon cycle[J].Journal of Geophysical Research.Biogeosciences,2011,116(G2):G00E03. |
6 | Houghton R A.Aboveground forest biomass and the global carbon balance[J].Global Change Biology,2005,11(6):945-958. |
7 | Dixon R K, Solomon A M, Brown S,et al.Carbon pools and flux of global forest ecosystems[J].Science,1994,263(5144):185-190. |
8 | 赵学勇,安沙舟,曹广民,等.中国荒漠主要植物群落调查的意义、现状及方案[J].中国沙漠,2023,43(1):9-19. |
9 | 党晓宏,高永,蒙仲举,等.西鄂尔多斯荒漠灌丛生态系统碳密度[J].中国沙漠,2018,38(2):352-362. |
10 | 卢振龙,龚孝生.灌木生物量测定的研究进展[J].林业调查规划,2009,34(4):37-40. |
11 | 刘婵,赵文智,刘冰,等.基于无人机和MODIS数据的巴丹吉林沙漠植被分布特征与动态变化研究[J].中国沙漠,2019,39(4):92-102. |
12 | Bryson M, Reid A, Ramos F,et al.Airborne vision-based mapping and classification of large farmland environments[J].Journal of Field Robotics,2010,27(5):632-655. |
13 | Hill R A, Wilson A K, George M,et al.Mapping tree species in temperate deciduous woodland using time-series multi-spectral data[J].Applied Vegetation Science,2010,13(1):86-99. |
14 | Zhao B, Yan Y, Guo H,et al.Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators:an application in the Yangtze River Delta area[J].Ecological Indicators,2008,9(2):346-356. |
15 | Torres-Sánchez J, Pe?a J M, de Castro A I,et al.Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV[J].Computers and Electronics in Agriculture,2014,103:104-113. |
16 | Boschetti M, Boschetti L, Oliveri S,et al.Tree species mapping with airborne hyper-spectral MIVIS data:the Ticino Park study case[J].International Journal of Remote Sensing,2007,28(6):1251-1261. |
17 | 王震,褚桂坤,张宏建,等.基于无人机可见光图像Haar-like特征的水稻病害白穂识别[J].农业工程学报,2018,34(20):73-82. |
18 | de Jesús Návar Cháidez J.Allometric equations and expansion factors for tropical dry forest trees of eastern Sinaloa,Mexico[J].Tropical and Subtropical Agroecosystems,2008,10(1):45-52. |
19 | Myneni R B, Dong J, Tucker C J,et al.A large carbon sink in the woody biomass of Northern forests[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):14784-14789. |
20 | 岳喜元,常学礼,刘良旭,等.科尔沁沙地几种固沙植物光谱-生物量模型构建与分析[J].中国沙漠,2014,34(6):1496-1502. |
21 | Duncanson L I, Niemann K O, Wulder M A.Integration of GLAS and Landsat TM data for aboveground biomass estimation[J].Canadian Journal of Remote Sensing,2010,36(2):129-141. |
22 | Gibbs H K, Brown S, Niles J O,et al.Monitoring and estimating tropical forest carbon stocks:making REDD a reality[J].Environmental Research Letters,2007,2(4):45023. |
23 | Baltsavias E P.Airborne laser scanning:basic relations and formulas[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):199-214. |
24 | 庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用[J].林业科学,2005(3):129-136. |
25 | 李鹤,丁占良,尤莉,等.乌兰布和沙漠西北缘大型沙波纹的初步研究[J].干旱区资源与环境,2020,34(9):129-136. |
26 | 叶静芸,吴波,刘明虎,等.乌兰布和沙漠东北缘荒漠-绿洲过渡带植被地上生物量估算[J].生态学报,2018,38(4):1216-1225. |
27 | Zhao X, Guo Q, Su Y,et al.Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2016,117:79-91. |
28 | Khosravipour A, Skidmore A K, Isenburg M.Generating spike-free digital surface models using LiDAR raw point clouds:a new approach for forestry applications[J].International Journal of Applied Earth Observation and Geoinformation,2016,52:104-114. |
29 | Chen Q, Baldocchi D, Gong P, et al.Isolating individual trees in a savanna woodland using small footprint lidar data.[J].Photogrammetric Engineering & Remote Sensing:Journal of the American Society of Photogrammetry,2006,72(8):923-932. |
30 | Huete A R.Soil influences in remotely sensed vegeta-tion-canopy spectra[J].Theory and Applications of Optical Remote Sensing,1989,107:107-141. |
31 | 高永刚,林悦欢,温小乐,等.基于无人机影像的可见光波段植被信息识别[J].农业工程学报,2020,36(3):178-189. |
32 | 汪小钦,王苗苗,王绍强,等.基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015,31(5):152-157. |
33 | Gitelson A A, Kaufman Y J, Stark R,et al.Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment,2002,80(1):76-87. |
34 | 符利勇,雷渊才,曾伟生.几种相容性生物量模型及估计方法的比较[J].林业科学,2014(6):42-54. |
35 | Piggot G J.A comparison of four methods for estimating herbage yield of temperate dairy pastures[J].New Zealand Journal of Agricultural Research,2012,32(1):121-123. |
36 | 李晓松,李增元,高志海,等.基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估测[J].中国沙漠,2011,31(1):162-167. |
37 | 王琪,常庆瑞,李铠,等.基于主成分分析和随机森林回归的冬小麦冠层叶绿素含量估算[J/OL].麦类作物学报[2024-02-17].. |
38 | Wang D, Xin X, Shao Q,et al.Modeling aboveground biomass in Hulunber grassland ecosystem by using unmanned aerial vehicle discrete lidar[J].Sensors,2017,17(1):180. |
39 | 刘清旺,李增元,陈尔学,等.利用机载激光雷达数据提取单株木树高和树冠[J].北京林业大学学报,2008(6):83-89. |
40 | 赵旦.基于激光雷达和高光谱遥感的森林单木关键参数提取[D].北京:中国林业科学研究院,2012. |
41 | 李志杰,黄兵,雷建国.影响机载激光雷达点云密度的因素分析[J].测绘科学,2019,44(6):204-211. |
42 | Chen Q.Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,106:95-106. |
43 | Gao Y K, Lu D S, Li G Y,et al.Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region[J].Remote Sensing,2018,10(4):627. |
44 | 罗庆辉,徐泽源,许仲林.天山雪岭云杉林生物量估测及空间格局分析[J].生态学报,2020,40(15):5288-5297. |
45 | 雷军,杨逍虎,刘红梅,等.黑河流域中游荒漠典型区域植被生物量及其影响因素[J].中国沙漠,2021,41(1):203-208. |
46 | Yuan Z, Fang C, Zhang R,et al.Topographic influences on soil properties and aboveground biomass in lucerne-rich vegetation in a semi-arid environment[J].Geoderma,2019,344:137-143. |
47 | 王雪梅,杨雪峰,赵枫,等.基于机器学习算法的干旱区绿洲地上生物量估算[J].生态环境学报,2023,32(6):1007-1015. |
/
〈 |
|
〉 |