Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (5): 50-59.DOI: 10.7522/j.issn.1000-694X.2024.00032
Previous Articles Next Articles
Lili Bao1,2(), Jinrong Li2(
), Zhaoen Han1,2, Yue Liu1,2, Haodong Shan1,2
Received:
2023-12-20
Revised:
2024-02-16
Online:
2024-09-20
Published:
2024-10-15
Contact:
Jinrong Li
CLC Number:
Lili Bao, Jinrong Li, Zhaoen Han, Yue Liu, Haodong Shan. Estimation of aboveground biomass of Haloxylon ammodendron based on UAV multi-source data[J]. Journal of Desert Research, 2024, 44(5): 50-59.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2024.00032
样地 号 | 株数 | 株高/m | 冠幅/m | ||||
---|---|---|---|---|---|---|---|
均值 | 最大值 | 最小值 | 均值 | 最大值 | 最小值 | ||
A | 78 | 2.76 | 4.86 | 0.94 | 4.25 | 9.71 | 1.36 |
B | 83 | 2.51 | 4.22 | 0.91 | 2.60 | 5.69 | 0.94 |
C | 83 | 2.49 | 4.82 | 0.55 | 2.78 | 7.23 | 0.55 |
总计/ 平均 | 244 | 2.58 | 4.86 | 0.55 | 3.19 | 9.71 | 0.55 |
Table 1 Statistics of measured data of sample plots
样地 号 | 株数 | 株高/m | 冠幅/m | ||||
---|---|---|---|---|---|---|---|
均值 | 最大值 | 最小值 | 均值 | 最大值 | 最小值 | ||
A | 78 | 2.76 | 4.86 | 0.94 | 4.25 | 9.71 | 1.36 |
B | 83 | 2.51 | 4.22 | 0.91 | 2.60 | 5.69 | 0.94 |
C | 83 | 2.49 | 4.82 | 0.55 | 2.78 | 7.23 | 0.55 |
总计/ 平均 | 244 | 2.58 | 4.86 | 0.55 | 3.19 | 9.71 | 0.55 |
指数名称 | 计算公式 | 理论区间 |
---|---|---|
过绿指数EXG | 2G-R-B | [ |
可见光波段差异植被指数VDVI | (2G-R-B)/(2G+R+B) | [-1,1] |
归一化绿红差异指数NGRDI | (G-R)/(G+R) | [-1,1] |
Table 2 Vegetation indices based on visible spectrum
指数名称 | 计算公式 | 理论区间 |
---|---|---|
过绿指数EXG | 2G-R-B | [ |
可见光波段差异植被指数VDVI | (2G-R-B)/(2G+R+B) | [-1,1] |
归一化绿红差异指数NGRDI | (G-R)/(G+R) | [-1,1] |
模型 | R2 | P |
---|---|---|
y=15.31x1x2x3+3.72 | 0.81 | <0.001 |
y=10.93x1x2x3+1.43x2+0.29 | 0.84 | <0.001 |
Table 3 Multiple stepwise regression model
模型 | R2 | P |
---|---|---|
y=15.31x1x2x3+3.72 | 0.81 | <0.001 |
y=10.93x1x2x3+1.43x2+0.29 | 0.84 | <0.001 |
名称 | 第一主成分 | 第二主成分 | 第三主成分 |
---|---|---|---|
H | 0.20 | 0.82 | 0.25 |
C | 0.40 | 0.79 | 0.26 |
CH | 0.43 | 0.88 | 0.19 |
VDVI | 0.67 | 0.16 | 0.66 |
NGRDI | 0.80 | 0.20 | 0.50 |
EXG | 0.28 | 0.10 | 0.95 |
VDVI×H | 0.63 | 0.49 | 0.52 |
NGRDI×H | 0.79 | 0.41 | 0.39 |
EXG×H | 0.29 | 0.42 | 0.84 |
VDVI×C | 0.70 | 0.51 | 0.43 |
NGRDI×C | 0.83 | 0.43 | 0.31 |
EXG×C | 0.36 | 0.46 | 0.75 |
VDVI×CH | 0.69 | 0.63 | 0.30 |
NGRDI×CH | 0.81 | 0.53 | 0.19 |
EXG×CH | 0.40 | 0.61 | 0.64 |
特征值 | 11.73 | 1.33 | 0.84 |
贡献率% | 78.20 | 8.86 | 5.61 |
累计贡献率% | 78.20 | 87.06 | 92.67 |
Table 4 Principal component factor load,eigenvalue and contribution rate
名称 | 第一主成分 | 第二主成分 | 第三主成分 |
---|---|---|---|
H | 0.20 | 0.82 | 0.25 |
C | 0.40 | 0.79 | 0.26 |
CH | 0.43 | 0.88 | 0.19 |
VDVI | 0.67 | 0.16 | 0.66 |
NGRDI | 0.80 | 0.20 | 0.50 |
EXG | 0.28 | 0.10 | 0.95 |
VDVI×H | 0.63 | 0.49 | 0.52 |
NGRDI×H | 0.79 | 0.41 | 0.39 |
EXG×H | 0.29 | 0.42 | 0.84 |
VDVI×C | 0.70 | 0.51 | 0.43 |
NGRDI×C | 0.83 | 0.43 | 0.31 |
EXG×C | 0.36 | 0.46 | 0.75 |
VDVI×CH | 0.69 | 0.63 | 0.30 |
NGRDI×CH | 0.81 | 0.53 | 0.19 |
EXG×CH | 0.40 | 0.61 | 0.64 |
特征值 | 11.73 | 1.33 | 0.84 |
贡献率% | 78.20 | 8.86 | 5.61 |
累计贡献率% | 78.20 | 87.06 | 92.67 |
模型 | R2 | P |
---|---|---|
y=4.37PC1+4.85PC2+1.85PC3+9.45 | 0.83 | <0.001 |
Table 5 Principal component regression model
模型 | R2 | P |
---|---|---|
y=4.37PC1+4.85PC2+1.85PC3+9.45 | 0.83 | <0.001 |
样地 号 | 植被总 面积/m2 | 梭梭覆盖 面积/m2 | 梭梭总地上 生物量/kg | 梭梭单位面积 地上生物量 /(kg·m-2) |
---|---|---|---|---|
A | 7 576.81 | 216.05 | 1 480.59 | 0.20 |
B | 17 873.17 | 1 282.47 | 8 840.47 | 0.49 |
C | 29 700.88 | 1 815.70 | 8 103.66 | 0.27 |
Table 6 Statistical table of Haloxylon ammodendron aboveground biomass in the study area
样地 号 | 植被总 面积/m2 | 梭梭覆盖 面积/m2 | 梭梭总地上 生物量/kg | 梭梭单位面积 地上生物量 /(kg·m-2) |
---|---|---|---|---|
A | 7 576.81 | 216.05 | 1 480.59 | 0.20 |
B | 17 873.17 | 1 282.47 | 8 840.47 | 0.49 |
C | 29 700.88 | 1 815.70 | 8 103.66 | 0.27 |
1 | 刘媖心.中国沙漠植物志[M].北京:科学出版社,1985. |
2 | 张奕,肖辉杰,辛智鸣,等.乌兰布和沙区典型灌木防风阻沙效益[J].中国水土保持科学(中英文),2021,19(1):87-96. |
3 | 李映坤,李锦荣,董雷,等.乌兰布和沙漠周边典型植物群落防风阻沙效果[J].中国沙漠,2022,42(6):65-73. |
4 | Búrquez A, Martínez-Yrízar A, Núñez S,et al.Aboveground biomass in three Sonoran Desert communities:variability within and among sites using replicated plot harvesting[J].Journal of Arid Environments,2010,74(10):1240-1247. |
5 | Houghton A R, Forrest H, Goetz S J.Importance of biomass in the global carbon cycle[J].Journal of Geophysical Research.Biogeosciences,2011,116(G2):G00E03. |
6 | Houghton R A.Aboveground forest biomass and the global carbon balance[J].Global Change Biology,2005,11(6):945-958. |
7 | Dixon R K, Solomon A M, Brown S,et al.Carbon pools and flux of global forest ecosystems[J].Science,1994,263(5144):185-190. |
8 | 赵学勇,安沙舟,曹广民,等.中国荒漠主要植物群落调查的意义、现状及方案[J].中国沙漠,2023,43(1):9-19. |
9 | 党晓宏,高永,蒙仲举,等.西鄂尔多斯荒漠灌丛生态系统碳密度[J].中国沙漠,2018,38(2):352-362. |
10 | 卢振龙,龚孝生.灌木生物量测定的研究进展[J].林业调查规划,2009,34(4):37-40. |
11 | 刘婵,赵文智,刘冰,等.基于无人机和MODIS数据的巴丹吉林沙漠植被分布特征与动态变化研究[J].中国沙漠,2019,39(4):92-102. |
12 | Bryson M, Reid A, Ramos F,et al.Airborne vision-based mapping and classification of large farmland environments[J].Journal of Field Robotics,2010,27(5):632-655. |
13 | Hill R A, Wilson A K, George M,et al.Mapping tree species in temperate deciduous woodland using time-series multi-spectral data[J].Applied Vegetation Science,2010,13(1):86-99. |
14 | Zhao B, Yan Y, Guo H,et al.Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators:an application in the Yangtze River Delta area[J].Ecological Indicators,2008,9(2):346-356. |
15 | Torres-Sánchez J, Peña J M, de Castro A I,et al.Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV[J].Computers and Electronics in Agriculture,2014,103:104-113. |
16 | Boschetti M, Boschetti L, Oliveri S,et al.Tree species mapping with airborne hyper-spectral MIVIS data:the Ticino Park study case[J].International Journal of Remote Sensing,2007,28(6):1251-1261. |
17 | 王震,褚桂坤,张宏建,等.基于无人机可见光图像Haar-like特征的水稻病害白穂识别[J].农业工程学报,2018,34(20):73-82. |
18 | de Jesús Návar Cháidez J.Allometric equations and expansion factors for tropical dry forest trees of eastern Sinaloa,Mexico[J].Tropical and Subtropical Agroecosystems,2008,10(1):45-52. |
19 | Myneni R B, Dong J, Tucker C J,et al.A large carbon sink in the woody biomass of Northern forests[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):14784-14789. |
20 | 岳喜元,常学礼,刘良旭,等.科尔沁沙地几种固沙植物光谱-生物量模型构建与分析[J].中国沙漠,2014,34(6):1496-1502. |
21 | Duncanson L I, Niemann K O, Wulder M A.Integration of GLAS and Landsat TM data for aboveground biomass estimation[J].Canadian Journal of Remote Sensing,2010,36(2):129-141. |
22 | Gibbs H K, Brown S, Niles J O,et al.Monitoring and estimating tropical forest carbon stocks:making REDD a reality[J].Environmental Research Letters,2007,2(4):45023. |
23 | Baltsavias E P.Airborne laser scanning:basic relations and formulas[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):199-214. |
24 | 庞勇,李增元,陈尔学,等.激光雷达技术及其在林业上的应用[J].林业科学,2005(3):129-136. |
25 | 李鹤,丁占良,尤莉,等.乌兰布和沙漠西北缘大型沙波纹的初步研究[J].干旱区资源与环境,2020,34(9):129-136. |
26 | 叶静芸,吴波,刘明虎,等.乌兰布和沙漠东北缘荒漠-绿洲过渡带植被地上生物量估算[J].生态学报,2018,38(4):1216-1225. |
27 | Zhao X, Guo Q, Su Y,et al.Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2016,117:79-91. |
28 | Khosravipour A, Skidmore A K, Isenburg M.Generating spike-free digital surface models using LiDAR raw point clouds:a new approach for forestry applications[J].International Journal of Applied Earth Observation and Geoinformation,2016,52:104-114. |
29 | Chen Q, Baldocchi D, Gong P, et al.Isolating individual trees in a savanna woodland using small footprint lidar data.[J].Photogrammetric Engineering & Remote Sensing:Journal of the American Society of Photogrammetry,2006,72(8):923-932. |
30 | Huete A R.Soil influences in remotely sensed vegeta-tion-canopy spectra[J].Theory and Applications of Optical Remote Sensing,1989,107:107-141. |
31 | 高永刚,林悦欢,温小乐,等.基于无人机影像的可见光波段植被信息识别[J].农业工程学报,2020,36(3):178-189. |
32 | 汪小钦,王苗苗,王绍强,等.基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015,31(5):152-157. |
33 | Gitelson A A, Kaufman Y J, Stark R,et al.Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment,2002,80(1):76-87. |
34 | 符利勇,雷渊才,曾伟生.几种相容性生物量模型及估计方法的比较[J].林业科学,2014(6):42-54. |
35 | Piggot G J.A comparison of four methods for estimating herbage yield of temperate dairy pastures[J].New Zealand Journal of Agricultural Research,2012,32(1):121-123. |
36 | 李晓松,李增元,高志海,等.基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估测[J].中国沙漠,2011,31(1):162-167. |
37 | 王琪,常庆瑞,李铠,等.基于主成分分析和随机森林回归的冬小麦冠层叶绿素含量估算[J/OL].麦类作物学报[2024-02-17].. |
38 | Wang D, Xin X, Shao Q,et al.Modeling aboveground biomass in Hulunber grassland ecosystem by using unmanned aerial vehicle discrete lidar[J].Sensors,2017,17(1):180. |
39 | 刘清旺,李增元,陈尔学,等.利用机载激光雷达数据提取单株木树高和树冠[J].北京林业大学学报,2008(6):83-89. |
40 | 赵旦.基于激光雷达和高光谱遥感的森林单木关键参数提取[D].北京:中国林业科学研究院,2012. |
41 | 李志杰,黄兵,雷建国.影响机载激光雷达点云密度的因素分析[J].测绘科学,2019,44(6):204-211. |
42 | Chen Q.Modeling aboveground tree woody biomass using national-scale allometric methods and airborne lidar[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,106:95-106. |
43 | Gao Y K, Lu D S, Li G Y,et al.Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region[J].Remote Sensing,2018,10(4):627. |
44 | 罗庆辉,徐泽源,许仲林.天山雪岭云杉林生物量估测及空间格局分析[J].生态学报,2020,40(15):5288-5297. |
45 | 雷军,杨逍虎,刘红梅,等.黑河流域中游荒漠典型区域植被生物量及其影响因素[J].中国沙漠,2021,41(1):203-208. |
46 | Yuan Z, Fang C, Zhang R,et al.Topographic influences on soil properties and aboveground biomass in lucerne-rich vegetation in a semi-arid environment[J].Geoderma,2019,344:137-143. |
47 | 王雪梅,杨雪峰,赵枫,等.基于机器学习算法的干旱区绿洲地上生物量估算[J].生态环境学报,2023,32(6):1007-1015. |
[1] | Jiliang Liu, Yilin Feng, Yongzhen Wang, Chengchen Pan, Tianling Bao, Jialong Ren, Wenzhi Zhao. Effects of restoration of artificial sand-fixing vegetation on the diversity of reptiles and mammals in the middle reaches of the Heihe River Basin [J]. Journal of Desert Research, 2024, 44(6): 167-177. |
[2] | Fangjiao An, Yongzhong Su, Ziru Niu, Tingna Liu. Evolution of soil nematode community after establishment of Haloxylon ammodendron plantations in an arid desert-oasis ecotone [J]. Journal of Desert Research, 2024, 44(2): 133-142. |
[3] | Xingchi Jiang, Wensuyalatu, Junyao Li, Feng Chen, Jinyu Hu, Guolin Wang, Sujuan Qing, Jiannan Lu, Shaokun Wang. Study on storage of soil surface carbon and nitrogen and its influencing factors in UradNational Nature Reserve of Haloxylon ammodendron based on SHAP values [J]. Journal of Desert Research, 2023, 43(2): 170-183. |
[4] | Haixiu He, Aihong Fu, Chuan Wang. Negetation index change and its driving forces of low mountain meadow vegetation in the northwest of Tacheng Region, Xinjiang, China [J]. Journal of Desert Research, 2023, 43(1): 187-196. |
[5] | Xiaohui He, Jianhua Si, Dongmeng Zhou, Chunlin Wang, Chunyan Zhao. Photosynthetic properties and leaf-scale water use efficiency of Haloxylon ammodendron in different stand ages [J]. Journal of Desert Research, 2023, 43(1): 20-26. |
[6] | Mingna Wang, Dinghai Zhang, Zhishan Zhang, Lining Lu. Canopy width prediction models for the Gurbantunggut Desert [J]. Journal of Desert Research, 2022, 42(4): 139-150. |
[7] | Feng Chen, Jing Zhang, Erniu Han, Wensuyalatu, Shenglin Li, Guolin Wang, Lei Wang, Shaokun Wang. Soil microbial diversity and its relationship with soil physicochemical properties in Urat natural Haloxylon ammodendron forest [J]. Journal of Desert Research, 2022, 42(2): 207-214. |
[8] | Quanlin Ma, Wen Shang, Xinyou Wang, Jing Ma, Kejie Zhan, Duoze Wang. Influence of sand blown activity on soil organic carbon and total nitrogen in artificial Haloxylon ammodendron plantations in arid desert regions [J]. Journal of Desert Research, 2022, 42(1): 71-78. |
[9] | Gaopeng Sun, Xianfeng Liu, Xiaohong Wang, Shuangshuang Li. Changes in vegetation coverage and its influencing factors across the Yellow River Basin during 2001-2020 [J]. Journal of Desert Research, 2021, 41(4): 205-212. |
[10] | Ning Li, Hai Zhou, Heng Ren, Peifang Chong, Guopeng Chen. Water sources of Haloxylon ammodendron under different groundwater depths [J]. Journal of Desert Research, 2021, 41(4): 79-86. |
[11] | Yongdao Gao, Rongrong Qiao, Shuxin Ji, Xuelian Bai, Lixiang Wang, Xueli Chang. Changes and driving factors of crops planting structure in Hetao Irrigation Region in Inner Mongolia [J]. Journal of Desert Research, 2021, 41(3): 110-117. |
[12] | Xuegang Xing, Changzhen Yan, Junfeng Lu, Xiaohui Zhai, Haowei Jia, Jiali Xie. Response of vegetation index to degraded succession of alpine meadow in Qinghai, China [J]. Journal of Desert Research, 2021, 41(3): 203-213. |
[13] | Taotao Zhang, Jinglong Fan, Shiming Wang, Xinwen Xu, Zhaohui Chai. Photosynthetic characteristics of Haloxylon ammodendron under high salinity water irrigation [J]. Journal of Desert Research, 2020, 40(5): 112-119. |
[14] | Lai Chimin, Lai Riwen, Xue Xian, Li Chengyang, You Quangang, Huang Cuihua, Peng Fei. Estimation of Aboveground Biomass of Different Degraded Alpine Grassland Based on Vegetation Coverage and Height [J]. Journal of Desert Research, 2019, 39(5): 127-134. |
[15] | Hua Rui, Zhou Rui, Wang Ting, Xu Ming, Tang Zhuangsheng, Hua Limin. Desertification Model and Classification of Alpine Steppe Based on Unmanned Aerial Vehicle (UAV) Remote Sensing [J]. Journal of Desert Research, 2019, 39(1): 26-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech