img

Wechat

  • CN 62-1070/P
  • ISSN 1000-694X
  • Bimonthly 1981
Adv search

Review on the effects of vegetation revegetation on key carbon cycle processes in arid sandy regions

  • Rui Hu ,
  • Yanhong Gao ,
  • Peng Zhang ,
  • Xiaojun Li
Expand
  • Shapotou Desert Research and Experiment Station / National Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

Received date: 2025-03-28

  Revised date: 2025-05-08

  Online published: 2025-07-08

Abstract

Vegetation restoration and reconstruction are key measures for the remediation of desertified lands in arid regions. This process profoundly influences regional carbon cycling by altering surface cover, biodiversity, and soil organic matter. This paper reviews the impact and mechanisms of vegetation restoration and reconstruction on key carbon cycling processes over the past 70 years in the sandy areas of northern China. The results indicate that vegetation restoration enhances photosynthetic carbon sequestration through the "vegetation-biocrust-soil" complex, with net ecosystem carbon exchange (NEE) measurements of -386 to -245, -280 to -156, and -210 to -125 g·m-2·a-1 for artificial forests, shrublands, and herbaceous communities, respectively. The annual carbon sequestration by biological soil crusts (BSCs) can reach 11.36 to 26.75 g·m-2·a-1. Soil respiration and organic carbon mineralization rates tend to increase with longer vegetation restoration periods. Soil CO2-C release is regulated by a combination of factors including vegetation composition, restoration duration, BSCs development level, and seasonal hydrological and thermal fluctuations, demonstrating significant spatial heterogeneity and temporal dynamics. Vegetation restoration significantly enhances soil organic carbon (SOC) storage by increasing biomass carbon input, BSC development, and improving soil aggregate structure, with SOC storage in the 0-100 cm soil layer reaching 0.19 to 7.71 kg·m-2. The sequestration rate is co-controlled by multiple factors such as ecological restoration measures, soil substrate properties, and hydrothermal coupling. The carbon-nitrogen coupling mechanism plays a key regulatory role in the carbon sink function of the system. Vegetation restoration and reconstruction significantly alter the surface greenhouse gas flux pattern, with CO2 flux dynamics showing complex environmental response characteristics. Future research should strengthen multi-scale long-term monitoring and deepen studies on BSC function, climate change responses, and carbon-nitrogen coupling mechanisms to provide scientific support for optimizing vegetation restoration models in sandy areas and achieving the "dual carbon" goals.

Cite this article

Rui Hu , Yanhong Gao , Peng Zhang , Xiaojun Li . Review on the effects of vegetation revegetation on key carbon cycle processes in arid sandy regions[J]. Journal of Desert Research, 2025 , 45(3) : 60 -71 . DOI: 10.7522/j.issn.1000-694X.2025.00089

References

[1] Reynolds J F, Smith D M S, Lambin E F,et al.Global desertification:building a science for dryland development[J].Science2007316:847-851.
[2] Li X J, Yang H T, Yang R.Divergent changes of carbon and nitrogen in the density fractions of soil organic matter after revegetation in the Tengger Desert,North China[J].Land Degradation & Development202435:2867-2883.
[3] Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science2004304:1623-1627.
[4] Ojima D S, Smith M S, Beardsley M.Factors Affecting Carbon Storage in Semi-arid and arid Ecosystems[M].Nairobi,Kenya:UNEP,1995:93-115.
[5] Huang J, Yu H, Guan X,et al.Accelerated dryland expansion under climate change[J].Nature Climate Change20166:166-171.
[6] Gisladottir G, Stocking M.Land degradation control and its global environmental benefits[J].Land Degradation & Development200516:99-112.
[7] Lal R.Potential of desertification control to sequester carbon and mitigate the greenhouse effect[J].Climatic Change200151:35-72.
[8] Rohatyn S, Yakir D, Rotenberg E,et al.Limited climate change mitigation potential through forestation of the vast dryland regions[J].Science2022377:1436-1439.
[9] Li X J, Li Y F, Xie T,et al.Recovery of soil carbon and nitrogen stocks following afforestation with xerophytic shrubs in the Tengger Desert,North China[J].Catena2022214:106277.
[10] Witzgall K, Vidal A, Schubert D I,et al.Particulate organic matter as a functional soil component for persistent soil organic carbon[J].Nature Communications202112(1):4115.
[11] Houerou H N L E.Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in North Africa and West Asia:a review[J].Arid Soil Research and Rehabilitation200014:3-14.
[12] 国家林业局.中国荒漠化和沙化状况公报[Z].2015.
[13] Guo L B, Gifford R M.Soil carbon stocks and land use change:a meta analysis[J].Global Change Biology20028:345-360.
[14] Ford D J, Cookson W R, Adams M A,et al.Role of soil drying in nitrogen mineralization and microbial community function in a semi-arid grasslands of North-west Australia[J].Soil Biology and Biochemistry200739:1557-1569.
[15] Li X R, He M Z, Duan Z H,et al.Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert,northern China[J].Geomorphology200788:254-265.
[16] Yang H T, Wang Z R, Li X J,et al.Vegetation restoration drives the dynamics and distribution of nitrogen and phosphorous pools in a temperate desert soil-plant system[J].Journal of Environmental Management2019245:200-209.
[17] Li Y Q, Brandle J, Awada T,et al.Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in China’s Horqin Sandy Land[J].Agriculture,Ecosystem and Environment2013177:75-84.
[18] Li X R, Chen Y W, Yang L W.Cryptogam diversity and formation of soil crusts in temperate desert[J].Annals of Arid Zone200443:335-353.
[19] Su Y G, Zhao X, Li A X,et al.Nitrogen fixation in biological soil crusts from the Tengger Desert,northern China[J].European Journal of Soil Biology201147(3):182-187.
[20] Li X R, Zhang P, Su Y G,et al.Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China:a four-year field study[J].Catena201297:119-126.
[21] Li X J, Yang H T, Shi W L,et al.Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert,northern China[J].Catena2018169:11-20.
[22] Tapia-Torres Y, López-Lozano N E, Souza V,et al.Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert[J].Journal of Arid Environments2015114:62-69.
[23] Schimel J P, Bennett J.Nitrogen mineralization:challenges of a changing paradigm[J].Ecology200485:591-602.
[24] Wang C, Wang X B, Liu D W.Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands[J].Nature Communication20145:4799.
[25] Lal R.Carbon cycling in global drylands[J].Current Climate Change Report20195:221-232.
[26] Assouline S, Thompson S E, Chen L,et al.The dual role of soil crusts in desertification[J].Journal of Geophysical Research:Biogeosciences2015120:2108-2119.
[27] Liu L, Sayer E J, Deng M,et al.The grassland carbon cycle:mechanisms,responses to global changes,and potential contribution to carbon neutrality[J].Fundamental Research20223(2):209-218.
[28] Li Z, Chen Y, Zhang Q,et al.Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia[J].Journal of Hydrology2022590:125355.
[29] Hong S, Yin G, Piao S,et al.Divergent responses of soil organic carbon to afforestation[J].Nature Sustainability20203:694-700.
[30] Paz-Ferreiro J, Medina-Roldán E, Ostle N J,et al.Grazing increases the temperature sensitivity of soil organic matter decomposition in a temperate grassland[J].Environmental Research Letters20127:014027.
[31] Wu H, Wiesmeier M, Yu Q,et al.Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management[J].Biology and Fertility of Soils201248:305-313.
[32] Alvarez G, Shahzad T, Andanson L,et al.Fontaine catalytic power of enzymes decreases with temperature:new insights for understanding soil C cycling and microbial ecology under warming[J].Global Change Biology201824:4238-4250.
[33] Cerli C, Celi L, Johansson M B,et al.Zanini soil organic matter changes in a spruce chronosequence on Swedish former agricultural soil[J].Soil Science2006171:837-849.
[34] Cleveland C C, Reed S C, Keller A B,et al.Vitousek Litter quality versus soil microbial community controls over decomposition:a quantitative analysis[J].Oecologia2014174:283-294.
[35] Hanson P J, Edwards N T, Garten C T,et al.Separating root and soil microbial contributions to soil respiration:a review of methods and observations[J].Biogeochemistry200048(1):115-146.
[36] Bahn M, Rodeghiero M, Anderson-Dunn M,et al.Soil respiration in European grasslands in relation to climate and assimilate supply[J].Ecosystems200811(8):1352-1367.
[37] Liu L X, Dong Y S, Qi Y C,et al.Study of distinguish root respiration from total soil respiration by root exclusion method in the temperate semi-arid grassland in Inner Mongolia,China[J].Eironmental Science2007(4):89-94.
[38] Han D Y, Yang Y F, Li J D.Temporal changes of a community of Leymus chinensis meadow in the Songnen Plain[J].Acta Prataculturae Sinica200716(3):9-14.
[39] 张丽华,陈亚宁,李卫红,等.干旱荒漠区不同土地利用/覆盖类型土壤呼吸速率的季节变化[J].中国科学(D辑:地球科学)2006,36(增刊Ⅱ):68-76.
[40] 杨建军,吕光辉,张燕,等.艾比湖流域土壤呼吸日变化及水热因子影响[J].新疆农业科学200946(2):223-231.
[41] 靳虎甲,马全林,张有佳,等.石羊河下游白刺灌丛演替发育过程的土壤呼吸及其影响因素分析[J].中国沙漠201232(1):140-147.
[42] 高艳红,刘立超,贾荣亮,等.沙坡头人工植被演替过程的土壤呼吸特征[J].生态学报201232(8):2474-2482.
[43] Luo J, Chen Y, Wu Y,et al.Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga Mountain,China[J].PLoS one20127:e42354.
[44] Shao Y Q, Zhao J.Comparative research on microbial biomass and number in soil microbiotic crust of different fixing sand dune[J].Journal of Desert Research200424(1):68-71.
[45] Zeng X H, Zhang W J, Shen H T,et al.Soil respiration response in different vegetation types at Mount Taihang,China[J].Catena2014116:78-85.
[46] Huang W J, Liu J X, Han T F,et al.Different plant covers change soil respiration and its sources in subtropics[J].Biology and Fertility of Soils201753(4):469-478.
[47] Raich J W, Tufekciogul A.Vegetation and soil respiration:correlations and controls[J].Biogeochemistry200048(1):71-90.
[48] 齐玉春,董云社,金钊,等.生物结皮对内蒙古沙地灌丛草地土壤呼吸特征的影响[J].地理科学201030(6):898-903.
[49] 管超,张鹏,李新荣.腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J].植物生态学报201741(3):301-310.
[50] 赵蓉,李小军,赵洋,等.固沙植被区两类结皮斑块土壤呼吸对不同频率干湿交替的响应[J].生态学杂志201534(1):138-144.
[51] 李玉强,赵哈林,赵玮,等.生物结皮对土壤呼吸作用影响初探[J].水土保持学报200822(3):106-151.
[52] 王新源,李玉霖,赵学勇,等.干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J].生态学报201232(15):4890-4901.
[53] Gao Y H, Zhang Z S, Liu L C,et al.Effects of heat and water factors on soil respiration in desert area[J].Acta Ecologica Sinica200929(11):5995-6001.
[54] Zhou P, Liu G B, Xue S.Review of soil respiration and the impact factors on grassland ecosystem[J].Acta Prataculturae Sinica200918(2):184-193.
[55] Conant R T, Dalla-Betta P, Klopatek C C,et al.Controls on soil respiration in semiarid soils[J].Soil Biology and Biochemistry200436(6):945-951.
[56] 黄磊,张志山,胡宜刚,等.干旱沙区典型人工植被群落下土壤剖面CO2浓度变化特征及其驱动因子[J].中国沙漠201434(1):125-132.
[57] Maestre F T, Cortina J.Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe[J].Applied Soil Ecology200323(3):199-209.
[58] 王玉红,马天娥,魏艳春,等.黄土高原半干旱草地封育后土壤碳氮矿化特征[J].生态学报201737(2):378-386.
[59] 邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报200519(3):24-28.
[60] Ren C J, Zhao F Z, Shi Z,et al.Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J].Soil Biology and Biochemistry2017115(3):1-10.
[61] Cui J, Zhang R J, Bu N S,et al.Changes in soil carbon sequestration and soil respiration following afforestation on paddy fields in north subtropical China[J].Journal of Plant Ecology20136(3):240-252.
[62] Wang Q K, Zhong M.Composition and mineralization of soil organic carbon pools in four single-tree species forest soils[J].Journal of Forensic Research201610(12):2918-2930.
[63] Quan Q, Wang C H, He N P,et al.Forest type a?ects the coupled relationships of soil C and N mineralization in the temperate forests of northern China[J].Scientific Reports20144(1):6584.
[64] Yang G S, Huang L, Zhang W,et al.Microbial keystone taxa and nitrogen cycling enzymes driven by the initial quality of litter jointly promoted the litter decomposition rates in the Tengger Desert,northern China[J].Applied Soil Ecology2025207:105919.
[65] 李云飞,谢婷,石万里,等.腾格里沙漠东南缘人工固沙植被区表层土壤有机碳矿化对凋落物添加的响应[J].中国沙漠201939(5):200-209.
[66] Sokol N W, Kuebbing S E, Karlsen-ayala E,et al.Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J].New Phytologist2019221(1):233-246.
[67] Li Y F, Xie T, Yang H T,et al.Revegetation enhances soil organic carbon mineralization and its temperature sensitivity in the Tengger Desert,North China[J].Catena2022218:106541.
[68] 周玉燕,贾晓红,赵昕,等.不同植被配置下土壤碳矿化潜力[J].生态学杂志201130(11):2442-2448.
[69] 周玉燕,贾晓红,张烜铭,等.土壤碳矿化潜力对沙坡头人工固沙植被演变的响应[J].生态学杂志201332(6):1371-1377.
[70] 李云飞,都军,张雪,等.腾格里沙漠东南缘不同类型生物土壤结皮对土壤有机碳矿化的影响[J].生态学报202040(5):1580-1589.
[71] Castillo-Monroy A P, Maestre F T, Delgado-Baquerizo M,et al.Biological soil crusts modulate N availability in semi-arid ecosystems:insights from a Mediterranean grassland[J].Plant Soil2010333:21-34.
[72] 谢婷,李云飞,李小军.腾格里沙漠东南缘固沙植被区生物土壤结皮及下层土壤有机碳矿化特征[J].生态学报202141(6):2339-2348.
[73] 杨雪芹.模拟放牧干扰对黄土丘陵区生物结皮土壤碳循环的影响及机制[D].杨凌:西北农林科技大学,2019.
[74] Patel K, Nirmal Kumar J I N, Kumar R,et al.Seasonal and temporal variation in soil microbial biomass C,N and P in different types land uses of dry deciduous forest ecosystem of Udaipur,Rajasthan,Western India[J].Applied Ecology and Environmental Research20108(4):377-390.
[75] Vinisa S, Claudia H, Jorge D E.Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico[J].Applied Soil Ecology200529:282-289.
[76] Barbhuiya A R, Arunachalam A, Pandey H N,et al.Dynamics of soil microbial biomass C,N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J].European Journal of Soil Biology200440:113-121.
[77] Li X J, Xie J S, Zhang Q F,et al.Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia[J].Geoderma2020364:114198.
[78] Rey A, Petsikos C, Jarvis P G,et al.Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J].European Journal of Soil Science200556(5):589-599.
[79] Stoyan H, De-Polli H, Bohm S,et al.Spatial heterogeneity of soil respiration and related properties at the plant scale[J].Plant and Soil2000222:203-214.
[80] Smith J L, Oishi A C, Frey S D,et al.Dynamics of soil carbon and nitrogen cycling in response to extreme precipitation events[J].Journal of Geophysical Research:Biogeosciences2017122(5):1234-1245.
[81] Liu Y, Wang Y, Li X,et al.Impact of extreme precipitation on soil microbial activity and carbon-nitrogen cycling[J].Environmental Research Letters201914(3):034007.
[82] Nosetto M D, Jobbágy E G, Paruelo J M.Carbon sequestration in semi-arid rangelands:comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia[J].Journal of Arid Environments200667:142-156.
[83] Yang H T, Li X R, Wang Z R,et al.Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert,northern China[J].Science of the Total Environment2014478:1-11.
[84] Dijkstra F A, West J B, Hobbie S E,et al.Plant diversity,CO2,and N influence inorganic and organic N leaching in grasslands[J].Ecology200788:490-500.
[85] Ma Q L, Wang X Y, Chen F,et al.Carbon sequestration of sand-fixing plantation of Haloxylon ammodendron in Shiyang River Basin:storage,rate and potential[J].Global Ecology and Conservation202128:e01607.
[86] Ma Q, Wang X, Chen F,et al.Carbon sequestration characteristics of typical sand-fixing plantations in the Shiyang River Basin of Northwest China[J].Forests202415:1548.
[87] Su Y Z, Zhao H L.Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land,North China[J].Ecological Engineering200320:223-235.
[88] Cao C Y, Jiang D M, Teng X H,et al.Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam.plantations in the Horqin Sandy Land of Northeast China[J].Applied Soil Ecology200840:78-85.
[89] Hu Y L, Zeng D H, Fan Z P,et al.Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands,China[J].Journal of Arid Environments200872:2193-2200.
[90] Chen F S, Zeng D H, Fahey T J,et al.Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China[J].Applied Soil Ecology201044:42-48.
[91] Cunningham S C, Metzeling K J, Mac Nally R,et al.Changes in soil carbon of pastures after afforestation with mixed species:sampling,heterogeneity and surrogates[J].Agriculture,Ecosystems and Environment2012158:58-65.
[92] An H, Li Q L, Yan X,et al.Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia,Northwest China[J].Ecological Engineering2019127:348-355.
[93] Nan W G, Dong Z B, Zhou Z C,et al.Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land,China[J]. Journal of Arid Land202416(1):14-28.
[94] Zhu X L, Si J H, He X H,et al.Effects of long-term afforestation on soil water and carbon in the Alxa Plateau[J].Frontiers in Plant Science202414:1273108.
[95] Zhou Y, Li X, Gao Y,et al.Carbon fluxes response of an artificial sand-binding vegetation system to rainfall variation during the growing season in the Tengger Desert[J].Journal of Environmental Management2020266:110556.
[96] Li X, Sun J, Zhang H,et al.Warming decreases desert ecosystem functioning by altering biocrusts in drylands[J].Journal of Applied Ecology202360:2676-2687.
[97] Thevenot M, Dignac M, Rumpel C.Fate of lignins in soils:a review[J].Soil Biology and Biochemistry201042:1200-1211.
[98] Qu Q, Deng L, Shangguan Z P,et al.Belowground C sequestrations response to grazing exclusion in global grasslands:dynamics and mechanisms[J].Agriculture,Ecosystems and Environment2024360:108771.
[99] Paul K, England J, Baker T,et al.Using measured stocks of biomass and litter carbon to constrain modelled estimates of sequestration of soil organic carbon under contrasting mixed-species environmental plantings[J].Science of the Total Environment2017615:348-359.
[100] Zhao H L, Guo Y R, Zhou R L,et al.The effects of plantation development on biological soil crust and topsoil properties in a desert in Northern China[J].Geoderma2011160:367-372.
[101] Fan B L, Zhang A P, Yang Y,et al.Long-term effects of xerophytic shrub Haloxylon ammodendron plantations on soil properties and vegetation dynamics in Northwest China[J].PLoS ONE 201611:e0168000.
[102] Wang K B, Deng L, Ren Z P,et al.Grazing exclusion significantly improves grassland ecosystem C and N pools in a desert steppe of Northwest China[J].Catena2016137:441-448.
[103] Cao W J, Li Y Q, Chen Y,et al.Grazing exclusion is more beneficial for restoring soil organic carbon and nutrient balance than afforestation on degraded sandy land[J].Frontiers in Plant Science202314:1326244.
[104] Hou D J, Liu J Y, Li N,et al.Grazing exclusion is more effective for vegetation restoration and nutrient transfer in the heavily degraded desert steppe[J].BMC Plant Biology202424:408.
[105] Shang Z H, Cao J J, Guo R Y,et al.Effect of enclosure on soil carbon,nitrogen and phosphorus of alpine desert rangland[J].Land Degradation & Development201728:1166-1177.
[106] Yu Z C, Zhang W, Liu Y S,et al.Dynamics of SOC density and driving factors during the restoration of artificial grassland and abandoned farmland in Mu Us Desert,China[J].Catena2023224:106991.
[107] Yuan J Y, Ouyang Z Y, Zheng H,et al.Ecosystem carbon storage following different approaches to grassland restoration in South-eastern Horqin Sandy Land,northern China[J].Global Ecology and Conservation202126:e01438.
[108] Lu Q, Ma H, Zhou Y,et al.Caragana korshinskii Kom.plantation reduced soil aggregate stability and aggregate-associated organic carbon on desert steppe[J].Peer J202210:e12507.
[109] Tariq A, Ullah A, Graciano C,et al.Combining different species in restoration is not always the right decision:monocultures can provide higher ecological functions than intercropping in a desert ecosystem[J].Journal of Environmental Management2024357:120807.
[110] Li L, Li S M, Sun J H,et al.Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J].Proceedings of National Academy of Sciences of the United States of America2007104:11192-11196.
[111] Miyasaka T, Okuro T, Miyamori E,et al.Effects of different restoration measures and sand dune topography on short- and long-term vegetation restoration in Northeast China[J].Journal of Arid Environments2014111:1-6.
[112] Post W M, Kwon K C.Soil carbon sequestration and land-use change:processes and potential[J].Global Change Biology20006:317-327.
[113] 徐松,廖超英,多杰吉,等.毛乌素沙地樟子松人工林不同坡向的碳储量及空间分布研究[J].水土保持研究201522(6):14-18.
[114] 王新友.石羊河流域人工固沙植被的固碳过程、速率和效益研究[D].兰州:兰州大学,2020.
[115] Li M, Wang L, Li J,et al.Grazing exclusion had greater effects than nitrogen addition on soil and plant community in a desert steppe,Northwest of China[J].BMC Plant Biology202222:60.
[116] Himes F L.Nitrogen,Sulfur and Phosphorus and the Sequestering of Carbon[M].Boca Raton,Florida,USA:CRC/Lewis Publishers,1998.
[117] Bechtold J S, Naiman R J.Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna[J].Soil Biology and Biochemistry200638:1325-1333.
[118] Pastor J, Aber J D, Mcclaugherty C A,et al.Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island,Wisconsin[J].Ecology198465:256-268.
[119] Wong V N, Greene R S B, Dalal R C,et al.Soil carbon dynamics in saline and sodic soils:a review[J].Soil Use and Management201026:2-11.
[120] Liu J K, Zhang K B.Spatial pattern and population structure of Artemisia ordosica shrub in a desert grassland under enclosure,Northwest China[J].International Journal of Environmental Research and Public Health201815:946.
[121] Burke I C.Control of nitrogen mineralization in a sagebush steppe landscape[J].Ecology198970(4):1115-1126.
[122] Feng X, Fan Q, Qu J,et al.Characteristics of carbon sources and sinks and their relationships with climate factors during the desertification reversal process in Yulin,China[J].Frontiers in Forests and Global Change20236:1288449.
[123] Chapin F S, Matson P A, Mooney H A.Principles of Terrestrial Ecosystem Ecology[M].New York,USA:Springer,2011.
[124] Wang M, Lu N, An N,et al.A trait-based approach for understanding changes in carbon sequestration in semi-arid grassland during succession[J].Ecosystems202225:155-171.
[125] Prach K, Jongepierova I, Rehounkova K,et al.Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession:successional trajectories and changes in species richness[J].Agriculture,Ecosystem Environment,2014182:131-136.
[126] Fierer N, Schimel J P, Holden P A.Variations in microbial community composition through two soil depth profiles[J].Soil Biology and Biochemistry200335:167-176.
[127] Luo Y Q, Field C B, Jackson R B.Does nitrogen constrain carbon cycling,or does carbon input stimulate nitrogen cycling?[J].Ecology200687(1):3-4.
[128] Reich P B, Hungate B A, Luo Y Q.Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide[J].Annual Review Ecology Evolution and Systematics200637:611-636.
[129] Averill C, Waring B.Nitrogen limitation of decomposition and decay:how can it occur?[J].Global Change Biology201824(4):1417-1427.
[130] Hoogmoed M, Cunningham S C, Baker P J,et al.Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings?[J].Agriculture,Ecosystem and Environment2014188:80-84.
[131] Liu X, Yang T, Wang Q,et al.Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions:a meta-analysis[J].Science of the Total Environment2018618:1658-1664.
[132] Hungate B A, Johnson D W, Dijkstra P,et al.Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland[J].Ecology200687(1):26-40.
[133] Deng L, Shangguan Z P.Afforestation drives soil carbon and nitrogen changes in China[J].Land Degradation & Development201728(1):151-165.
[134] Liu X, Zhang W, Wu M,et al.Changes soil nitrogen stocks following vegetation restoration in a typical karst catchment[J]. Land Degradation & Development201930:60-72.
[135] Vargas D N, Bertiller M B, Ares J O,et al.Soil C and N dynamics induced by leaf-litter decomposition of shrubs and perennial grasses of the Patagonian Monte[J].Soil Biology and Biochemistry200638(8):2401-2410.
[136] 牛亚毅,李玉强,龚相文,等.沙质草地生长季生态系统碳净交换量特征及土壤呼吸贡献率[J].生态学杂志201736(9):2423-2430.
[137] 牛亚毅.科尔沁沙地不同类型生态系统碳通量特征及其影响机制[D].北京:中国科学院大学,2021.
[138] Liu R, Li Y, Wang Q X.Variations in water and CO2 fluxes over a saline desert in western China[J].Hydrological Processes201226(4):513-522.
[139] Liu R, Pan L P, Jenerette G D,et al.High efficiency in water use and carbon gain in a wet year for a desert halophyte community[J].Agricultural and Forest Meteorology2012162/163:127-135.
[140] Jia X, Zha T, Gong J,et al.Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns[J].Agricultural and Forest Meteorology2016228/229:120-129.
[141] Gao Y H, Li X R, Liu L C,et al.Seasonal variation of carbon exchange from a revegetation area in a Chinese desert[J].Agricultural and Forest Meteorology2012156:134-142.
[142] Gao Y, Liu L, Ma S,et al.Vegetation restoration in dryland with shrub serves as a carbon sink:evidence from a 13-year observation at the Tengger Desert of Northern China[J].Land Degradation & Development202435(1):102-113.
[143] 周媛媛.腾格里沙漠东南缘典型荒漠与人工固沙植被生态系统碳通量比较研究[D].北京:中国科学院大学,2020.
[144] 杨晓君,刘廷玺,王冠丽,等.科尔沁沙地流动沙丘不同时空尺度水热变化及CO2交换特征[J].应用生态学报202031(6):1989-1998.
[145] Luo Y Y, Zuo X A, Li Y L,et al.Community carbon and water exchange responses to warming and precipitation enhancement in sandy grassland along a restoration gradient[J].Ecology & Evolution20199(19):10938-10949.
[146] Jia X, Zha T S, Wu B,et al.Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in Northwest China[J].Biogeosciences201411(17):4679-4693.
[147] Zhou Y Y, Li X R, Gao Y H,et al.Response of ecosystem functioning to environmental variations in an artificial sand-binding vegetation desert in northwestern China[J].Environmental Science and Pollution Research202027:15325-15336.
[148] 袁洪艺,杜灵通,乔成龙,等.人工灌丛总初级生产力和蒸散对气候变化的响应模拟:以宁夏盐池县荒漠草原区为例[J].生态学报202444(8):3515-3524.
[149] Niu Y Y, Li Y Q, Liu W,et al.Effects of environment factors on the carbon fluxes of semi-fixed sandy land recovering from degradation[J].Frontiers in Ecology and Evolution202311:1-14.
[150] Sala O E, Gherardi L A, Reichmann L,et al.Legacies of precipitation fluctuations on primary production:theory and data synthesis[J].Philosophical Transactions of the Royal Society B:Biological Sciences2012367(1606):3135-3144.
[151] Sun Q, Meyer W S, Koerber G R,et al.Prior rainfall pattern determines response of net ecosystem carbon exchange to a large rainfall event in a semi-arid woodland[J].Agriculture Ecosystem and Environment2017247:112-119.
[152] Delgado-Balbuena J, Arredondo J T, Loescher H W,et al.Seasonal precipitation legacy effects determine the carbon balance of a semiarid grassland[J].Journal of Geophysical Research-Biogeosciences2019124(4):987-1000.
[153] 裴斌,张光灿,张淑勇,等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报201333(5):1386-1396.
[154] 韩刚,赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报201030(15):4019-4026.
[155] 成雅君,韩红英,任士福.不同造林模式土壤碳汇及固碳因子[J].河北林业科技202329(2):59-63.
[156] Guan C, Zhang P, Zhao C,et al.Effects of warming and rainfall pulses on soil respiration in a biological soil crust-dominated desert ecosystem[J].Geoderma381:114683.
[157] Li X R, Hui R, Zhang P,et al.Divergent responses of moss- and lichen-dominated biocrusts to warming and increased drought in arid desert regions[J].Agricultural and Forest Meteorolog2021303:108387.
[158] Dhawi F, Aleidan M M.Oasis agriculture revitalization and carbon sequestration for climate-resilient communities[J].Frontiers in Agronomy2024:6.
[159] Ma J, Liu R, Li C,et al.Herbaceous layer determines the relationship between soil respiration and photosynthesis in a shrub-dominated desert plant community[J].Plant and Soil2020449(1):193-207.
[160] Bao J T, Wang J, Li X R,et al.Age-related changes in photosynthesis and water relations of revegetated Caragana korshinskii in the Tengger Desert,Northern China[J].Trees201529:1749-1760.
[161] Li X R.Influence of variation of soil spatial heterogeneity on vegetation restoration[J].Science in China,Series D:Earth Sciences,200548:2020-2031.
[162] Chen S, Wang W, Xu W,et al.Plant diversity enhances productivity and soil carbon storage[J].Proceedings of the National Academy of Science of the United States of America2018115(16):4027-4032.
Outlines

/