img

Wechat

Adv search

Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (3): 60-71.DOI: 10.7522/j.issn.1000-694X.2025.00089

Previous Articles     Next Articles

Review on the effects of vegetation revegetation on key carbon cycle processes in arid sandy regions

Rui Hu(), Yanhong Gao(), Peng Zhang, Xiaojun Li   

  1. Shapotou Desert Research and Experiment Station / National Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2025-03-28 Revised:2025-05-08 Online:2025-05-20 Published:2025-07-08
  • Contact: Yanhong Gao

Abstract:

Vegetation restoration and reconstruction are key measures for the remediation of desertified lands in arid regions. This process profoundly influences regional carbon cycling by altering surface cover, biodiversity, and soil organic matter. This paper reviews the impact and mechanisms of vegetation restoration and reconstruction on key carbon cycling processes over the past 70 years in the sandy areas of northern China. The results indicate that vegetation restoration enhances photosynthetic carbon sequestration through the "vegetation-biocrust-soil" complex, with net ecosystem carbon exchange (NEE) measurements of -386 to -245, -280 to -156, and -210 to -125 g·m-2·a-1 for artificial forests, shrublands, and herbaceous communities, respectively. The annual carbon sequestration by biological soil crusts (BSCs) can reach 11.36 to 26.75 g·m-2·a-1. Soil respiration and organic carbon mineralization rates tend to increase with longer vegetation restoration periods. Soil CO2-C release is regulated by a combination of factors including vegetation composition, restoration duration, BSCs development level, and seasonal hydrological and thermal fluctuations, demonstrating significant spatial heterogeneity and temporal dynamics. Vegetation restoration significantly enhances soil organic carbon (SOC) storage by increasing biomass carbon input, BSC development, and improving soil aggregate structure, with SOC storage in the 0-100 cm soil layer reaching 0.19 to 7.71 kg·m-2. The sequestration rate is co-controlled by multiple factors such as ecological restoration measures, soil substrate properties, and hydrothermal coupling. The carbon-nitrogen coupling mechanism plays a key regulatory role in the carbon sink function of the system. Vegetation restoration and reconstruction significantly alter the surface greenhouse gas flux pattern, with CO2 flux dynamics showing complex environmental response characteristics. Future research should strengthen multi-scale long-term monitoring and deepen studies on BSC function, climate change responses, and carbon-nitrogen coupling mechanisms to provide scientific support for optimizing vegetation restoration models in sandy areas and achieving the "dual carbon" goals.

Key words: carbon cycle, soil respiration, SOC storage, carbon flux, revegetation, sandy areas in North China

CLC Number: