img

官方微信

高级检索

中国沙漠, 2020, 40(6): 105-117 doi: 10.7522/j.issn.1000-694X.2020.00078

青藏高原东北部晚第四纪黄土-古土壤的元素组成及其物源指示

曾方明,1, 薛红盼1,2

1.中国科学院青海盐湖研究所 中国科学院盐湖资源综合高效利用重点实验室/青海省盐湖地质与环境重点实验室,青海 西宁 810008

2.中国科学院大学,北京 100049

Elemental compositions of the late Quaternary loess-paleosol on the northeastern Qinghai-Tibet Plateau and their implications for provenance

Zeng Fangming,1, Xue Hongpan1,2

1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources / Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes,Qinghai Institute of Salt Lakes,Chinese Academy of Sciences,Xining 810008,China

2.University of Chinese Academy of Sciences,Beijing 100049,China

收稿日期: 2020-05-08   修回日期: 2020-07-24   网络出版日期: 2020-12-09

基金资助: 中国科学院青年创新促进会专项项目.  2017468
第二次青藏高原综合科学考察研究项目.  2019QZKK0805

Received: 2020-05-08   Revised: 2020-07-24   Online: 2020-12-09

作者简介 About authors

曾方明(1982—),男,湖南邵阳人,博士,副研究员,研究方向为黄土地球化学E-mail:fmzeng@163.com , E-mail:fmzeng@163.com

摘要

青藏高原东北部的晚第四纪黄土-古土壤记录了该区环境变化的信息,以往的物源研究样品空间覆盖度不足,仍需进一步研究。在青藏高原东北部较大范围地采集了黄土-古土壤、风成砂、河流沉积、湖相沉积样品,并对这些样品小于75 μm组分的元素组成进行了X射线荧光光谱(XRF)分析。结果表明:(1)青藏高原东北部晚第四纪黄土-古土壤的元素组成以SiO2、Al2O3、Fe2O3、CaO为主;与UCC(上地壳)相比,青藏高原东北部晚第四纪黄土-古土壤的CaO、MgO含量较高,Na2O、K2O含量较低。(2)具有物源指示意义的K2O/Al2O3(摩尔比)、TiO2/Al2O3(摩尔比)、Zr/Nb和Zr/Ti比值图解显示青藏高原东北部青海湖地区的晚第四纪黄土-古土壤与当地的河流沉积、湖相沉积存在较大差异,揭示它们来自青海湖地区以外的区域。(3)K2O/Al2O3(摩尔比)、TiO2/Al2O3(摩尔比)、Zr/Nb和Zr/Ti比值图解显示青藏高原东北部的晚第四纪黄土-古土壤与柴达木盆地的风成砂、河流沉积和湖相沉积重叠在一起,表明柴达木盆地的风化细碎屑物质在近地面西北风、高空西风环流的作用下很可能为青藏高原东北部黄土-古土壤的堆积提供了主要物源。

关键词: 黄土 ; 古土壤 ; 元素地球化学 ; 物源 ; 青藏高原东北部

Abstract

Late Quaternary loess-paleosol deposits on the northeastern Qinghai-Tibet Plateau (NE QTP) recorded information of environmental changes in this area. Previous studies have been carried out on their source area. However, due to the insufficient space coverage of samples in previous studies, this issue still needs further study. We collected samples of loess-paleosol, eolian sands, fluvial sediments and lacustrine deposits on the NE QTP. Chemical compositions of these samples (less than 75 μm fraction) were determined by X-ray fluorescence (XRF) spectrometry. The results show that: (1) The chemical composition of the late Quaternary loess-paleosol on the NE QTP is mainly composed of SiO2, Al2O3, Fe2O3, and CaO; compared with the composition of UCC (upper continental crust), the late Quaternary loess-paleosol on the NE QTP has higher CaO and MgO content, lower Na2O and K2O content. (2) K2O/Al2O3 (molar ratio), TiO2/Al2O3 (molar ratio), Zr/Nb and Zr/Ti ratios show that the source area of the late Quaternary loess-paleosol in the Qinghai Lake area on the NE QTP is different from that of the fluvial sediments and lacustrine sediments in this area, indicating that the loess-paleosol in the Qinghai Lake area is probably from a region far away from the Qinghai Lake area. (3) K2O/Al2O3 (molar ratio), TiO2/Al2O3 (molar ratio), Zr/Nb and Zr/Ti ratios show that the late Quaternary loess-paleosol on the NE QTP and the eolian sand, fluvial sediments and lacustrine deposits in the Qaidam Basin cannot be distinguished, indicating that the weathered detrital material in the Qaidam Basin is likely to provide substantial material for loess-paleosol on the NE QTP under the influence of the near-surface northwest wind and the Westerly circulation.

Keywords: loess ; paleosol ; elemental geochemistry ; provenance ; northeastern Qinghai-Tibet Plateau

PDF (4519KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

曾方明, 薛红盼. 青藏高原东北部晚第四纪黄土-古土壤的元素组成及其物源指示. 中国沙漠[J], 2020, 40(6): 105-117 doi:10.7522/j.issn.1000-694X.2020.00078

Zeng Fangming, Xue Hongpan. Elemental compositions of the late Quaternary loess-paleosol on the northeastern Qinghai-Tibet Plateau and their implications for provenance. Journal of Desert Research[J], 2020, 40(6): 105-117 doi:10.7522/j.issn.1000-694X.2020.00078

0 引言

第四纪黄土-古土壤是中国西北内陆荒漠与亚洲季风共同作用的产物1。黄土高原黄土-古土壤因其巨大的分布面积和近乎连续的堆积,在第四纪冰期-间冰期波动2、东亚季风变迁(包含古降水和古温度变化)3-7、植被变化8、古人类活动9乃至未来气候变化的预测10等方面提供了重要信息。分布于黄土高原的新近纪三趾马红黏土11-12和新近纪黄土-古土壤13也被证明为风尘堆积,它们与第四纪黄土-古土壤序列为研究2 200万年来的地球气候环境演化提供了完整的陆相沉积记录。简言之,黄土高原黄土-古土壤序列为理解中国季风区的环境演变和丰富全球古气候变化理论提供了关键的陆相沉积记录,它与深海沉积、极地冰芯共同构成了全球变化研究的支柱114-15

第四纪黄土-古土壤不但在黄土高原大面积分布,而且在邻近的青藏高原东北部也广泛分布16-21。西宁地区堆积早第四纪以来的黄土-古土壤22,青海湖地区普遍堆积晚第四纪黄土-古土壤1820

对于青藏高原东北部的晚第四纪黄土-古土壤,已有一些关于物源的研究23-25。西宁黄土和柴达木盆地沉积物样品的碎屑锆石U-Pb年龄谱显示西宁黄土主要来自包括柴达木盆地在内的青藏高原北部25。依据柴达木盆地雅丹和沙丘的分布、形态,并结合盆地的风向,有学者提出柴达木盆地在冰期强烈的风蚀作用下为盆地东部的黄土沉积提供了主要的物源26,碎屑锆石的U-Pb年龄谱也支持上述观点27

青海湖地区是青藏高原东北部的重要组成部分。笔者之前依据少量样品的元素地球化学结果示踪了西宁地区和青海湖地区的黄土的物源,推测它们可能主要来自柴达木盆地23-24。然而,之前的研究缺少柴达木盆地样品的地球化学数据的支持,不能从较大空间范围(从潜在源区到沉积区)对青藏高原东北部的黄土开展物源示踪研究,从而影响了对研究区黄土-古土壤形成过程的深入理解,值得进一步研究。

青藏高原东北部晚第四纪黄土-古土壤的元素组成具有怎样的特征?这些元素地球化学组成特征对于青藏高原东北部黄土-古土壤的物源具有怎样的指示意义?柴达木盆地的细碎屑物质是否为青海湖地区乃至整个青藏高原东北部的黄土-古土壤提供了主要的物源?围绕上述问题,我们在青藏高原东北部较大范围地采集了晚第四纪黄土-古土壤及风成砂、河流沉积、湖相沉积样品,以期获得青藏高原东北部晚第四纪黄土-古土壤的元素组成特征,并进一步探讨青海湖地区以及整个青藏高原东北部黄土-古土壤的物源。

1 材料与方法

1.1 材料

青藏高原东北部被北边的阿尔金山、祁连山和南边的昆仑山包围。青藏高原东北部广泛分布风成砂、河流沉积、湖相沉积。柴达木盆地以东的区域广泛分布第四纪黄土和古土壤。这些不同类型的沉积物为本次研究提供了丰富的样品。

为了研究青藏高原东北部晚第四纪黄土-古土壤的元素地球化学特征及物源,在研究区较大的空间范围内采集了晚第四纪黄土-古土壤、风成砂、河流沉积和湖相沉积样品,共计116个(图1)。

图1

图1   青藏高原东北部各类样品的分布图(底图来自Google Earth)

Fig. 1   Distribution of different samples on the northeastern Qinghai-Tibet Plateau


晚第四纪黄土-古土壤样品(55个):根据土壤发育程度采集了黄土和古土壤样品。一般地,黄土样品质地较疏松多孔,浅黄色;古土壤样品质地较致密,有机质含量较高,灰黑色。青海湖周边种羊场、江西沟剖面的岩性特征和沉积年代1618显示这些黄土、古土壤样品的沉积年龄约小于15 ka BP,古土壤层通常发育在黄土层之上,二者之间为渐变过渡。位于西宁地区的LD-1和YJC-40、祁连山东缘的WC-1和JZT-1等黄土样品可能形成于末次冰期。因此,本次研究的黄土-古土壤样品的沉积时代不早于末次冰期,为晚第四纪沉积物。

风成砂样品(27个):风成砂比黄土在质地上更加疏松,且颗粒明显比黄土粗。在青海湖地区,除HD-A、HD-B和HD-C为湖泊东岸沙丘的表层砂(表层0~5 cm)外,其他风成砂样品均取自黄土层之下的风成砂层。柴达木盆地广泛发育风成砂28-29。除了NMHN-1(距地表1.0 m)、NMHN-2(距地表2.0 m)、NMHN-3(距地表1.5 m)样品外,柴达木盆地的其他风成砂样品为沙丘表层0~20 cm的物质。在黄河源区鄂陵湖以东采集了风成砂样品,HHX-5和MD-2取自沙丘表层0~20 cm深,HHX-3取自下伏于黄土地层的风成砂(采样深度75~85 cm)。

河流沉积样品(13个):在青海湖的主要入湖河流布哈河、沙柳河以及南侧的江西沟采集了现代河流沉积样品。在柴达木盆地出露的洪积扇地层中采集了由粉砂和细砂组成的透镜体中的沉积物。

湖相沉积样品(21个):青海湖地区的湖相沉积样品采自二郎剑(ELJ-1和ELJ-2)、青海湖东岸(HYW-3、GH-1和GH-2)出露的湖相地层。柴达木盆地的湖相沉积样品均取自湖相沉积地层,这些地层伴随着强烈的风蚀作用,有些已经演变为雅丹地貌。介形虫组合特征表明构成柴达木盆地鸭湖地区雅丹的地层时代为中新世晚期30

1.2 方法

在风尘堆积(包含第四纪黄土-古土壤)的物源示踪研究中,依据风尘堆积的粒度组成,为了更多地保留风尘堆积的地球化学信息并减小粒度效应对元素相对含量的影响,有学者选用粒度小于75 μm的样品组分进行Sr、Nd同位素的测定31-32。参照上述组分标准,对于松散的样品,将风干样品过200目不锈钢网筛,获得约小于75 μm的组分;对于固结较好的样品,先将风干样品在玛瑙研钵中轻轻碾碎,再过200目不锈钢网筛,获得约小于75 μm的组分。对于取自柴达木盆地西部的湖相沉积样品,由于样品(XT-2、YD-1、YD-2、YD-3、YD-4)的粒度测试结果表明小于75 μm的组分占87%以上,因此不用过筛,直接在玛瑙研钵中磨细即可。

元素含量在中国科学院青海盐湖研究所盐湖化学分析测试中心测定。称取约4 g粉末样品,采用硼酸粘结剂镶边压片,压制成直径为4 cm、高度为0.8 cm的薄片。压好的片采用Axios X射线荧光光谱仪(型号为PW4400)进行元素的半定量测定。为了监测仪器测试的精度,我们对5个样品设置了平行样品。将两次测量的平均值近似地视为测量真实值,平行样品的结果显示,除了Nb的分析误差可达18%外,其他元素的分析误差小于7%。

为了与上地壳(UCC)的元素组成进行对比,将仪器测得的各元素含量,除以34个元素的浓度之和(即表1中的原始总浓度),再乘以100,重新计算了各元素的含量(%)。

表1   青藏高原东北部各类样品的岩性、经纬度和元素组成

Table 1  Lithology, latitude and longitude, and elemental compositions of different samples on the northeastern Qinghai-Tibet Plateau

样品 编号岩性纬度 /(°)经度 /(°)测试 组分原始 总浓 度/%SiO2/%Al2O3/%Fe2O3/%CaO /%Na2O /%K2O /%MgO /%TiO2/%P2O5/%MnO /%Zr/ (mg·kg-1)Nb/ (mg·kg-1)Hf/ (mg·kg-1)
ZYC-18古土壤36.63100.87<75 μm89.2562.9613.945.609.541.352.942.320.730.220.10255.0417.807.46
ZYC-25古土壤36.63100.87<75 μm88.6060.4413.865.6212.171.272.802.550.700.190.10213.5817.177.14
ZYC-30古土壤36.63100.87<75 μm88.8158.5013.745.4014.061.512.682.870.650.180.09195.1116.476.78
ZYC-43黄土36.63100.87<75 μm87.8958.6012.644.8915.691.602.502.840.650.200.09234.7815.476.77
ZYC-46黄土36.63100.87<75 μm87.7159.3512.604.7715.171.582.462.850.630.210.09257.7514.866.85
HYW-2黄土36.82100.80<75 μm86.9158.3911.914.3517.491.082.273.410.580.180.08288.7614.576.73
HBB-1古土壤37.03100.78<75 μm87.6862.3413.495.2111.621.002.572.540.660.210.09262.5616.327.27
HBB-2黄土37.03100.78<75 μm88.8362.5913.004.6811.281.492.363.420.640.180.09299.4814.997.29
XH-2古土壤37.06100.72<75 μm87.7964.4413.075.279.901.102.702.240.680.230.10296.2316.807.52
GC-1黄土37.33100.12<75 μm89.1064.5713.044.869.321.482.233.370.640.170.08379.0915.497.53
SNH-1黄土36.9899.60<75 μm86.4160.5112.364.4815.530.962.502.560.600.190.08258.4115.486.99
QHH-1古土壤36.8499.71<75 μm89.0365.4313.794.938.271.362.532.500.670.180.09268.6115.807.65
HMH古土壤36.7599.75<75 μm86.8663.9012.514.7911.851.112.412.280.660.180.09272.6716.807.46
HMH*古土壤36.7599.75<75 μm86.8563.7212.614.8111.911.112.432.280.630.180.09269.4416.067.44
JXG-1古土壤36.59100.30<75 μm87.3063.8812.825.1710.851.182.422.350.650.340.09265.6916.097.41
JXG-2黄土36.59100.30<75 μm88.6962.8013.054.6611.171.352.403.380.640.200.09284.2715.897.34
151-1古土壤36.56100.47<75 μm88.7365.7513.285.128.221.302.762.320.680.250.10256.3714.937.66
151-2古土壤36.56100.47<75 μm89.1765.1813.815.348.021.212.742.480.670.200.10265.4816.067.52
EH-1黄土36.55100.72<75 μm87.4960.8411.854.5714.421.602.333.280.590.180.08248.7615.417.08
DTH-7古土壤36.43101.07<75 μm87.9661.2013.065.1612.740.922.603.130.650.170.10238.8915.907.11
DTH-9古土壤36.51100.91<75 μm88.1665.2513.445.548.671.102.632.110.700.200.10259.7716.977.60
DTH-11黄土36.55100.88<75 μm86.1357.3711.584.5919.460.822.232.840.580.200.08229.0714.136.51
RYS-1古土壤36.43101.11<75 μm89.7166.3514.025.646.321.162.802.410.700.210.11256.6216.857.72
RYS-2古土壤36.43101.11<75 μm88.8065.9013.605.617.551.142.742.220.700.190.10249.1216.727.68
RYS-3黄土36.43101.11<75 μm89.1864.6413.705.148.751.302.602.680.670.180.09263.1015.337.54
RYS-5古土壤36.43101.07<75 μm88.4063.6713.174.9810.201.722.472.580.680.180.09285.9214.157.45
RYS-5古土壤36.43101.07<75 μm88.3163.5513.164.9710.371.702.492.570.660.180.09279.9314.927.44
RYS-6黄土36.43101.07<75 μm86.9759.4312.974.5615.501.292.322.820.610.160.08265.7115.746.89
LM-1古土壤36.24101.08<75 μm87.7764.1012.924.9310.611.152.572.550.660.170.09284.4816.037.45
LM-2黄土36.24101.08<75 μm87.7760.4112.054.3014.741.522.303.610.590.160.08247.9513.667.01
TJ-1古土壤37.2999.04<75 μm88.1163.9513.214.8910.461.362.492.440.680.170.09269.7114.567.46
TJ-2黄土37.2999.04<75 μm87.4264.7912.264.3111.281.532.292.320.690.170.09311.4714.237.55
TJ-3古土壤37.2098.89<75 μm88.0365.0913.045.169.261.102.582.570.660.190.10253.9115.457.62
TJ-4黄土37.2098.89<75 μm88.9261.5014.144.7311.371.332.553.240.640.170.08290.7615.737.16
WL黄土36.9498.40<75 μm91.3859.0515.045.5510.891.632.923.620.710.190.11189.2617.356.75
WL*黄土36.9498.40<75 μm91.3859.1614.975.5510.841.642.913.630.710.190.11192.3814.456.82
CK黄土36.7999.11<75 μm89.8064.2212.774.249.961.932.483.180.650.180.09345.1815.897.34
LYX-1黄土36.15100.95<75 μm85.7856.8410.563.9921.451.142.102.900.550.170.07243.9014.066.52
YJC-40a黄土36.73101.79<75 μm88.4463.4213.014.4411.161.462.452.940.620.170.09270.2516.157.35
LD-1a黄土36.43102.56<75 μm88.7664.4912.644.4110.371.682.382.880.650.180.08310.7315.457.45
HQSK-1黄土37.20101.54<75 μm88.4662.5713.904.6710.402.022.612.620.680.170.10281.4514.687.49
HQSK-2古土壤37.25101.45<75 μm91.3666.8714.925.204.721.812.802.330.730.240.13297.3315.867.82
QSZ-1古土壤37.63101.36<75 μm90.8366.4916.276.312.301.523.302.390.770.230.13274.7217.478.22
QSZ-2黄土37.63101.36<75 μm83.1859.4014.865.2712.471.432.792.560.660.200.11254.9515.547.86
AR-1古土壤38.06100.46<75 μm91.2163.1416.206.344.971.683.103.190.790.190.11265.2718.567.72
WC-1黄土36.73104.09<75 μm90.0563.0213.195.079.722.042.493.280.690.170.09250.8815.167.32
WC-1*黄土36.73104.09<75 μm90.1363.4312.955.089.542.142.473.200.690.170.09246.6815.597.30
WC-2黄土36.73104.09<75 μm89.3562.1012.474.7711.472.252.413.390.650.170.09250.2215.247.15
JZT-1黄土36.10103.78<75 μm88.5065.5712.454.439.821.392.352.890.620.160.08260.2814.067.57
DXX-1古土壤35.65103.40<75 μm87.0363.9712.934.6411.521.112.422.230.650.220.08279.2314.517.53
DXX-2黄土35.65103.40<75 μm87.9764.3512.654.6510.871.402.342.600.650.170.09262.6016.167.42
HZ-1古土壤34.99102.92<75 μm87.9766.8813.044.528.631.232.502.050.630.230.08291.8814.807.73
HZ-2黄土34.99102.92<75 μm88.2066.7212.414.259.291.442.412.430.590.160.08258.4014.987.70
LMS-1黄土34.11102.64<75 μm93.1173.4413.374.791.181.742.631.730.680.170.06274.0117.828.10
HR-1古土壤35.30101.18<75 μm88.0967.9212.754.867.481.272.472.020.680.200.09339.2416.117.79
MD-5黄土34.9798.11<75 μm86.7770.0510.663.309.591.291.972.110.600.160.07351.3314.187.87
MD-6黄土34.9798.11<75 μm87.3367.6911.663.5710.071.182.192.600.600.160.07398.1216.207.71
HHX-1黄土34.6798.15<75 μm87.1170.2911.803.727.911.212.271.680.630.180.07481.6415.237.92
HHX-2黄土34.6798.15<75 μm86.0564.5613.024.0312.000.962.491.860.580.190.08306.1213.197.48
平均值b63.5813.104.8410.721.382.522.660.650.190.09277.2015.657.40
ZYC-57风成砂36.63100.87<75 μm86.8464.3011.373.7812.921.802.252.460.610.180.07371.6515.147.65
ZYC-60风成砂36.63100.87<75 μm87.2663.6811.793.9312.801.722.332.620.610.170.08345.1914.587.51
HD-A风成砂36.76100.77<75 μm86.5563.8711.234.2113.171.621.932.390.890.240.091381.1222.957.86
HD-B风成砂36.74100.77<75 μm86.9662.8811.244.7813.091.681.902.581.070.280.101842.3329.687.91
HD-C风成砂36.73100.78<75 μm86.8761.4411.205.2713.911.611.852.621.230.300.102174.1531.587.98
SNH风成砂36.9899.60<75 μm88.0564.5712.173.9011.451.822.392.630.590.160.08270.3213.697.51
SNH-2风成砂36.9899.60<75 μm87.1164.6711.623.9512.201.582.172.670.630.180.08388.5014.687.54
RYS-4风成砂36.43101.11<75 μm87.5369.3812.113.538.161.472.272.170.490.150.07272.2713.707.95
JXG-3风成砂36.59100.30<75 μm87.5164.2211.854.0612.171.582.092.800.660.230.08585.1716.487.55
GC-2风成砂37.33100.12<75 μm89.5665.8412.784.668.402.082.192.880.650.180.08531.5116.947.67
LM-3风成砂36.24101.08<75 μm89.2262.5513.424.3810.921.882.503.260.590.170.08293.5414.297.29
YQZ-1风成砂38.2391.41<75 μm90.2465.7710.833.449.534.162.273.050.530.160.07244.3015.067.61
YQZ-3风成砂38.2391.38<75 μm90.6160.7015.476.319.191.082.903.120.700.150.11152.1915.007.16
XT-3风成砂38.0593.14<75 μm90.9760.959.373.7213.024.571.825.230.740.200.08611.2017.817.30
HX-1风成砂37.2897.45<75 μm84.9958.4411.334.1519.201.332.002.340.710.160.08464.2017.747.25
AM-1风成砂36.8896.56<75 μm88.0670.1210.553.348.891.852.082.010.660.180.07542.6015.987.94
AM-3风成砂36.9796.26<75 μm88.4967.3510.883.499.592.382.033.180.570.160.07451.2515.487.74
ZJN-2风成砂36.3597.19<75 μm92.1861.9010.234.3711.023.342.045.740.760.220.08798.1619.477.29
NMHN-1风成砂36.7696.51<75 μm89.3362.5012.904.1411.091.762.424.030.540.160.08261.1011.257.22
NMHN-2风成砂36.7696.51<75 μm89.2061.8013.214.4511.591.482.503.740.590.170.08279.6714.717.21
NMHN-3风成砂36.7796.52<75 μm88.9461.4912.784.1612.222.282.433.510.540.150.07235.2010.407.16
DGL-1风成砂36.3995.75<75 μm87.6367.1310.323.7111.111.781.932.820.660.220.07511.6717.037.66
HHX-3风成砂34.6798.15<75 μm83.9857.9712.323.4520.471.051.981.730.540.130.10219.7510.316.91
HHX-5风成砂34.7498.12<75 μm86.2871.4410.063.079.621.411.761.550.640.160.06457.4314.397.97
MD-2风成砂34.8098.14<75 μm88.0471.2911.343.597.431.432.031.670.700.180.07798.0317.257.93
HR-2风成砂35.30101.18<75 μm87.9266.6312.034.069.901.442.272.540.630.180.08403.1516.087.65
AR-2风成砂38.06100.46<75 μm88.3464.9313.334.408.721.912.473.070.620.190.11273.1612.937.66
平均值64.3611.774.0911.551.932.182.900.670.190.08561.4416.477.56
BHH-1河流沉积37.0399.74<75 μm87.1665.0611.913.9611.611.832.112.200.750.200.07731.2319.737.86
BHH-2河流沉积37.0399.74<75 μm87.7762.3713.184.3312.431.602.392.530.650.170.08292.8016.787.30
BHH-3河流沉积37.0499.74<75 μm87.0265.5311.664.2511.431.512.082.260.710.210.08836.2018.907.81
DTHS-1河流沉积36.26101.07<75 μm87.6766.5011.674.0010.151.972.032.350.760.210.08839.6519.577.78
DTHS-2河流沉积36.26101.07<75 μm87.6667.4812.103.869.551.602.242.080.630.180.07400.9515.707.71
JXG-R河流沉积36.59100.30<75 μm89.6274.3910.433.395.231.822.061.480.700.190.06623.5717.228.10
RSC-1河流沉积37.16100.54<75 μm87.9167.7912.144.218.901.412.322.070.680.170.08442.6517.197.84
SLH-1河流沉积37.33100.12<75 μm89.5368.9012.495.226.081.622.192.210.700.210.09763.0618.347.92
LM-4河流沉积36.24101.08<75 μm87.2065.0011.554.5811.251.662.082.390.840.220.091303.5223.087.72
KLKH-N洪积物37.3696.81<75 μm87.7063.8911.774.2112.201.712.192.850.680.170.09407.8816.457.42
DCD-1洪积物37.7395.44<75 μm91.2264.4314.764.397.501.672.943.310.570.160.08300.4713.677.51
TSHW-1河流沉积37.1796.66<75 μm87.2564.6211.384.1712.161.602.192.560.740.210.08852.0017.807.64
ZJN-1河流沉积36.3597.02<75 μm89.0068.3810.724.088.821.972.172.720.640.210.08281.7015.297.73
平均值66.4911.984.209.791.692.232.390.700.190.08621.2117.677.72
ELJ-1湖相沉积36.65100.43<75 μm89.8065.6812.774.378.842.162.512.470.690.170.08491.5816.517.66
ELJ-2湖相沉积36.65100.43<75 μm90.7961.9714.615.748.981.792.832.800.750.170.09373.3118.177.32
HYW-3湖相沉积36.82100.80<75 μm91.0448.9713.555.1124.060.962.523.710.570.130.09244.4611.195.35
GH-1湖相沉积37.02100.59<75 μm87.5767.6110.814.429.601.482.062.390.940.300.081094.2620.247.91
GH-2湖相沉积37.02100.59<75 μm88.4769.3811.014.357.911.512.242.330.680.280.07513.3417.587.95
BQD-1湖相沉积36.5296.20<75 μm86.9567.8210.644.0310.351.912.092.010.630.210.08379.7115.027.84
HTTL-1湖相沉积37.3796.75<75 μm90.7966.3414.525.555.871.752.831.950.690.190.09235.9816.087.67
NLZN湖相沉积38.6293.51<75 μm88.9466.2811.974.459.121.982.382.640.700.190.07318.2615.067.72
XT-1湖相沉积38.0593.14全岩91.6258.1210.733.9114.882.052.107.110.580.200.08341.4914.846.79
YQZ-2湖相沉积38.2391.41全岩93.4851.559.623.7022.311.631.888.310.460.160.11159.729.415.70
YQZ-6湖相沉积38.3891.31全岩95.1358.8515.746.247.311.983.365.390.650.150.11129.5214.436.82
NMHN-4湖相沉积36.7796.52全岩93.0960.3417.415.016.862.763.463.230.560.110.05120.4111.736.91
NMHN-5湖相沉积36.7796.52全岩93.3867.5014.327.112.182.472.872.380.660.150.04240.7915.837.95
XT-2湖相沉积37.7093.61全岩88.8852.819.263.0026.412.341.963.390.340.100.06120.686.275.78
LH2湖相沉积38.6693.39全岩93.9460.0413.564.679.211.192.677.610.560.130.11179.2014.006.95
YD-1湖相沉积38.6693.27全岩91.2155.9912.704.7915.771.262.525.920.520.180.10152.9112.406.30
YD-2湖相沉积38.5192.76全岩89.3152.529.713.2925.941.972.183.570.340.120.07106.535.355.67
YD-3湖相沉积38.3092.23全岩90.6355.6311.884.4217.361.212.445.990.550.150.08183.2811.836.37
YD-3*湖相沉积38.3092.23全岩91.2554.7612.254.4917.481.272.486.190.570.160.08184.7611.656.22
YD-4湖相沉积38.0391.85全岩88.7057.9610.372.3818.323.482.124.740.320.090.05107.537.196.97
AM-2湖相沉积36.9796.26全岩90.7563.6614.645.797.631.732.892.500.690.140.08191.9816.527.29
TSHW-2湖相沉积37.1796.66全岩91.3064.6914.616.116.191.732.632.790.770.150.10231.8217.287.56
平均值b60.6512.594.6912.621.872.503.960.600.160.08281.7513.666.98
UCC c6615.25.04.23.93.42.20.680.160.08

*,平行样品;a,数据引自文献[23];b,平行样品的数据不参与计算;c,数据引自文献[33-34]。

新窗口打开| 下载CSV


2 结果与分析

2.1 元素测定结果

116个样品的元素测定结果见表1(表中部分数据来自文献[2333-34])。其中常量元素SiO2、Al2O3、Fe2O3、CaO、Na2O、K2O、MgO、TiO2、P2O5、MnO的浓度为百分含量(%)。各类样品均以SiO2、Al2O3、Fe2O3和CaO为主,这4种氧化物的含量超过了87%。青藏高原东北部晚第四纪黄土-古土壤的SiO2、Al2O3、Fe2O3和CaO含量超过了90%,其中CaO的含量为1.18%~21.45%。

2.2 青藏高原东北部晚第四纪黄土-古土壤的元素组成特征

黄土源区的风化碎屑物质在地表经风力搬运作用而充分混合,第四纪黄土是上地壳的代表性沉积物,常被用于确定UCC的化学组成35-36。与UCC的元素组成相比,青海湖地区(为青藏高原东北部的一部分)晚第四纪黄土-古土壤的元素组成具有

如下特征:CaO、MgO、P2O5含量较高,Na2O、K2O含量较低,SiO2、Al2O3、Fe2O3、TiO2、MnO的含量与UCC接近(图2A)。

图2

图2   晚第四纪黄土-古土壤常量元素含量UCC标准化图(A,青海湖地区;B,青藏高原东北部)

Fig.2   UCC-normalized abundances of major elements for the loess and paleosol samples from Qinghai Lake area (A), and northeastern Qinghai-Tibet Plateau (B)


青藏高原东北部(包含青海湖地区)晚第四纪黄土-古土壤的常量元素组成具有如下特征:与UCC相比,Na2O和K2O的含量较低;除LMS-1和QSZ-1样品的CaO含量较低外,CaO的含量整体较高(图2B)。相比于黄土高原中部洛川第四纪黄土-古土壤较高的CaO含量35,青藏高原东北部黄土-古土壤的CaO含量更高一些。

CaO在青藏高原东北部各个不同点位、不同深度的黄土-古土壤中具有较大的变化幅度(图2B),可能与黄土形成于相对冷干而古土壤形成于相对暖湿的气候状态有关。一般地,古土壤形成时期,由于降水较多,CaO在风化过程中易遭受淋滤而流失,从而导致古土壤层中的CaO比黄土层的要低。

青藏高原东北部黄土-古土壤、风成砂、河流沉积和湖相沉积样品的常量元素含量平均值UCC标准化图显示:这4类沉积物的CaO、MgO含量较高,Na2O、K2O含量较低,其他常量元素的含量与UCC的含量接近;与风成砂、河流沉积和湖相沉积相比,黄土-古土壤的Na2O含量略低,Al2O3和Fe2O3的含量略微偏高(图3)。

图3

图3   青藏高原东北部各类样品常量元素含量平均值UCC标准化图

Fig.3   UCC-normalized abundances of major elements (average value) for different samples from the northeastern Qinghai-Tibet Plateau


化学蚀变指数(CIA)指示了样品中长石风化成黏土矿物的程度,从而成为一个反映化学风化程度的指标37CIA的计算公式为:CIA=n(Al2O3)/n(Al2O3+CaO*+Na2O+K2O)×100,其中CaO*仅为硅酸盐中的CaO,不包含碳酸盐和磷酸盐中的CaO37。由于缺少CO2的数据,我们参照文献[38]描述的方法依据P2O5的含量进行了磷酸盐的校正39并计算了青藏高原东北部黄土-古土壤的CIA值。

依据地球上的主要矿物和一些反映古气候的代表性沉积物的CIA37,有学者认为CIA值小于50时指示未受化学风化的状态,CIA值为50~65时指示干冷气候条件下的低等化学风化程度,CIA值为65~85时指示暖湿气候条件下的中等化学风化程度,CIA值大于85时反映炎热、潮湿气候条件下的强烈化学风化程度40

由于钾长石的蚀变速率小于斜长石的蚀变速率,Na2O/K2O(摩尔比)比值能够反映沉积物中斜长石风化的程度,进而反映沉积物遭受的化学风化程度41。我们采用K2O/Na2O(摩尔比)比值来作为化学风化强度的一个指标,比值越高,化学风化强度越强。

青藏高原东北部黄土和古土壤的CIA值小于70(55.4~69.4),K2O/Na2O(摩尔比)比值为0.7~1.9。依据CIA值对应的化学风化程度40,青藏高原东北部黄土-古土壤的CIA值指示它们遭受低等、中等的化学风化程度(图4),与青藏高原东北部整体相对冷干的气候状态相对应。

图4

图4   青藏高原东北部黄土-古土壤的CIA值和K2O/Na2O比值

Fig.4   CIA values and K2O/Na2O ratios for loess and paleosol deposits on the northeastern Qinghai-Tibetan Plateau


2.3 青海湖地区晚第四纪黄土-古土壤的物源

由于钾长石比斜长石更抗风化,且硅酸盐矿物中的部分K在风化过程中紧密地结合在伊利石黏土矿物的晶格中,使其在风化过程中的活动性变差,在干旱-半干旱区处于低等和中等化学风化条件下的风化剖面中的K不易迁移42。Ti、Al在风化过程中不易从风化剖面中迁出,是不易迁移的稳定元素43。K2O/Al2O3和TiO2/Al2O3比值在中国黄土不同粒级组分中的比值基本上一致,从而表明这两个比值受沉积分异的影响较小,能够用于示踪风成沉积的物源44。K2O/Al2O3和TiO2/Al2O3图解被用于示踪中新世风尘堆积的物源45

在风化过程中,赋存于碎屑岩中的元素Zr、Nb具有相对较低的移动性,基本上不发生改变,可以指示母岩的特征46,从而具有物源指示意义。Zr/Ti和Zr/Nb比值已被用于中国南方下蜀黄土的物源示踪研究42

与青海湖地区的风成砂、河流沉积和湖相沉积的TiO2/Al2O3比值(0.039~0.140)相比,该区黄土-古土壤的TiO2/Al2O3比值较为集中,为0.058~0.071;与青海湖地区的风成砂、河流沉积和湖相沉积的Zr/Ti和Zr/Nb比值相比,该区黄土-古土壤的Zr/Ti和Zr/Nb比值也比较集中,分别为0.05008~0.09925和11.846~24.483(图5)。

图5

图5   青海湖地区各类样品的K2O/Al2O3-TiO2/Al2O3、TiO2/Al2O3-Zr/Nb、K2O/Al2O3-Zr/Ti、K2O3/Al2O3-Zr/Nb图解

Fig.5   Plots of K2O/Al2O3 vs. TiO2/Al2O3, TiO2/Al2O3 vs. Zr/Nb, K2O/Al2O3 vs. Zr/Ti, and K2O3/Al2O3 vs. Zr/Nb for samples from the Qinghai Lake area


值得注意的是,来自青海湖东岸现代沙丘表层样品的TiO2/Al2O3、Zr/Ti和Zr/Nb比值在所有样品中最高(图5),显著高于来自下伏于黄土地层的古代风成砂,青海湖东岸现代沙丘的物源值得深入研究。

具有物源指示意义的K2O/Al2O3和TiO2/Al2O3、TiO2/Al2O3和Zr/Nb、K2O/Al2O3和Zr/Ti、K2O/Al2O3和Zr/Nb图解显示:青海湖地区的黄土-古土壤与研究区的风成砂、河流沉积和湖相沉积具有明显的不同(图5),表明该区的黄土-古土壤为远源搬运沉积,其物源与近源沉积的河流沉积和湖相沉积不同。这一结果与之前采用少量样品得出的结果24一致。由于青海湖地区位于柴达木盆地的下风向,根据粉尘搬运的特性,我们推测柴达木盆地可能为青海湖地区的晚第四纪黄土-古土壤提供了物源。接下来将对整个青藏高原东北部的黄土-古土壤样品与来自柴达木盆地的各类样品进行比较和分析,进一步探讨青藏高原东北部黄土-古土壤的物源。

2.4 青藏高原东北部晚第四纪黄土-古土壤的物源

青海湖地区属于青藏高原东北部的一部分。为了验证柴达木盆地可能为青海湖地区的晚第四纪黄土-古土壤提供了来源物质的推测,利用TiO2/Al2O3、Zr/Nb等具有物源指示意义的元素比值将青藏高原东北部的所有晚第四纪黄土-古土壤(包含青海湖地区的黄土-古土壤)与柴达木盆地的风成砂、河流沉积和湖相沉积进行了比较。在K2O/Al2O3和TiO2/Al2O3、TiO2/Al2O3和Zr/Nb、K2O/Al2O3和Zr/Ti、K2O/Al2O3和Zr/Nb图解中,青藏高原东北部的晚第四纪黄土-古土壤的元素比值落在柴达木盆地风成砂、河流沉积和湖相沉积圈闭的范围内,与它们难以区分开来(图6),从而表明青藏高原东北部(包括青海湖地区)的晚第四纪黄土-古土壤很可能来自柴达木盆地的风化碎屑物质。

图6

图6   青藏高原东北部各类样品的K2O/Al2O3-TiO2/Al2O3、TiO2/Al2O3-Zr/Nb、K2O/Al2O3-Zr/Ti、K2O3/Al2O3-Zr/Nb图解

Fig.6   Plots of K2O/Al2O3 vs. TiO2/Al2O3, TiO2/Al2O3 vs. Zr/Nb, K2O/Al2O3 vs. Zr/Ti, and K2O3/Al2O3 vs. Zr/Nb for samples from the northeastern Qinghai-Tibet Plateau


柴达木盆地为典型的西北干旱内陆盆地,是青藏高原最大的盆地(约700 km×300 km)47,区内广泛分布干旱气候条件下独有的盐湖和沙漠。由于柴达木盆地四周被高山环绕,在祁连山的南坡和东昆仑山的北坡,发育大量的洪积扇。柴达木盆地气候干旱,且温差较大,地表植被覆盖度低,在物理风化和化学风化的长期作用下,盆地内部形成了大量的风化碎屑物质。

柴达木盆地的近地面风为西北风48,中纬度西风带在盆地的上空盛行。柴达木盆地碎屑锆石的U-Pb年龄谱和黄土高原黄土-古土壤沉积物中锆石的U-Pb年龄谱表明在西风的作用下柴达木盆地为黄土高原的黄土-古土壤序列提供了大量的物源27。碎屑锆石U-Pb年龄谱显示青藏高原东北部的黄土主要来自上风向的柴达木盆地等区域25。柴达木盆地风蚀作用强烈,风和风沙对沉积地层进行改造,将它们塑造成了可观的雅丹地貌,被风蚀作用吹走的沉积物向东输送,很可能为柴达木盆地下风向地带的黄土-古土壤提供了主要物源27

依据上述分析,我们认为在近地面西北风和高空西风的作用下,柴达木盆地周围高山岩石风化进入盆地的细碎屑物质以及盆地内部沉积地层的风化产物很可能为青藏高原东北部的黄土-古土壤提供了丰富的物源。

3 结论

与UCC的元素组成相比,青藏高原东北部晚第四纪黄土和古土壤的元素组成具有CaO含量较高、Na2O含量较低的特点。

青藏高原东北部的晚第四纪黄土-古土壤的CIA值小于70,指示这些沉积物经历低等、中等的化学风化程度。

具有物源指示意义的K2O/Al2O3(摩尔比)、TiO2/Al2O3(摩尔比)、Zr/Ti和Zr/Nb比值的图解显示青海湖地区的晚第四纪黄土-古土壤为远源搬运沉积。

在近地面西北风和西风环流的作用下,柴达木盆地很可能作为主要的源区为青藏高原东北部(包含青海湖地区)的黄土-古土壤提供了丰富的细碎屑物质。

参考文献

刘东生.黄土与环境[M].北京科学出版社1985.

[本文引用: 2]

Ding Z LDerbyshire EYang S Let al.

Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record

[J].Paleoceanography,2002173):1003-1023.

[本文引用: 1]

Gao LNie J SClemens Set al.

The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese Loess Plateau

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012317/318128-133.

[本文引用: 1]

Liu X MRolph TBloemendal Jet al.

Quantitative estimates of palaeoprecipitation at Xifeng,in the Loess Plateau of China

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,19951132):243-248.

Liu T SDing Z L.

Chinese loess and the paleomonsoon

[J].Annual Review of Earth and Planetary Sciences,199826111-145.

An Z SKukla G JPorter S Cet al.

Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years

[J].Quaternary Research,1991361):29-36.

Kang SDu JWang Net al.

Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon

[J].Geology,2020.Doi:10.1130/G47621.1.

[本文引用: 1]

Jiang WCheng YYang Xet al.

Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration

[J].Journal of Applied Ecology,201350440-448.

[本文引用: 1]

Zhu Z YDennell RHuang W Wet al.

Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago

[J].Nature,20185597715):608-612.

[本文引用: 1]

Hao Q ZWang LOldfield Fet al.

Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability

[J].Nature,20124907420):393-396.

[本文引用: 1]

Ding Z LSun J MYang S Let al.

Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin,source provenance and paleoclimate change

[J].Geochimica et Cosmochimica Acta,2001656):901-913.

[本文引用: 1]

Guo Z TPeng S ZHao Q Zet al.

Origin of the Miocene-Pliocene Red-Earth formation at Xifeng in northern China and implications for paleoenvironments

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,20011701/2):11-26.

[本文引用: 1]

Guo Z TRuddiman W FHao Q Zet al.

Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China

[J].Nature,20024166877):159-163.

[本文引用: 1]

Heller FLiu T S.

Magnetostratigraphical dating of loess deposits in China

[J].Nature,19823005891):431-433.

[本文引用: 1]

Sun Y BClemens S CMorrill Cet al.

Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon

[J].Nature Geoscience,201251):46-49.

[本文引用: 1]

Zeng F MLiu X JLi X Zet al.

Aquatic species dominate organic matter in Qinghai Lake during the Holocene:evidence from eolian deposits around the lake

[J].Journal of Earth Science,2017283):484-491.

[本文引用: 2]

Lu R JJia F FGao S Yet al.

Holocene aeolian activity and climatic change in Qinghai Lake basin,northeastern Qinghai-Tibetan Plateau

[J].Palaeogeography,Palaeoclimatology,Palaeoecology,20154301-10.

Liu X JLai Z PYu L Pet al.

Luminescence chronology of aeolian deposits from the Qinghai Lake area in the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications

[J].Quaternary Geochronology,20121037-43.

[本文引用: 2]

Stauch GIjmker JPötsch Set al.

Aeolian sediments on the north-eastern Tibetan Plateau

[J].Quaternary Science Reviews,20125771-84.

Liu X JXiao G QE C Yet al.

Accumulation and erosion of aeolian sediments in the northeastern Qinghai-Tibetan Plateau and implications for provenance to the Chinese Loess Plateau

[J].Journal of Asian Earth Sciences,2017135166-174.

[本文引用: 1]

Ding Z YLu R JLyu Z Qet al.

Geochemical characteristics of Holocene aeolian deposits east of Qinghai Lake,China,and their paleoclimatic implications

[J].Science of the Total Environment,2019692917-929.

[本文引用: 1]

鹿化煜王先彦孙雪峰.

钻探揭示的青藏高原东北部黄土地层与第四纪气候变化

[J].第四纪研究,2007272):230-241.

[本文引用: 1]

曾方明.

西宁地区新近纪风尘堆积的元素组成特征及物源指示意义

[J].第四纪研究,2017376):1309-1319.

[本文引用: 4]

曾方明.

青海湖地区晚第四纪黄土的物质来源

[J].地球科学,2016411):131-138.

[本文引用: 2]

Che X DLi G J.

Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon

[J].Quaternary Research,2013803):545-551.

[本文引用: 3]

Kapp PPelletier J DRohrmann Aet al.

Wind erosion in the Qaidam basin,central Asia:implications for tectonics,paleoclimate,and the source of the Loess Plateau

[J].GSA Today,2011214-10.

[本文引用: 1]

Pullen AKapp PMcCallister A Tet al.

Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications

[J].Geology,20113911):1031-1034.

[本文引用: 3]

李继彦赵二丹柳文龙.

察尔汗盐湖线形沙丘沙物质来源及输移路径

[J].中国沙漠,2018385):909-918.

[本文引用: 1]

凌智永王建萍陈亮.

柴达木盆地灌丛沙丘稀土元素地球化学特征与物源

[J].中国沙漠,2018385):963-971.

[本文引用: 1]

毛晓长刘祥董颖.

柴达木盆地鸭湖地区水上雅丹地貌成因研究

[J].地质论评,2018646):193-206.

[本文引用: 1]

Chen JLi G JYang J Det al.

Nd and Sr isotopic characteristics of Chinese deserts:implications for the provenances of Asian dust

[J].Geochimica et Cosmochimica Acta,20077115):3904-3914.

[本文引用: 1]

Zeng F MLiang M YPeng S Zet al.

Sr-Nd-Pb isotopic compositions of the Neogene eolian deposits in the Xining basin and implication for their dust sources

[J].Journal of Earth Science,2015265):669-676.

[本文引用: 1]

Taylor S RMcLennan S M.The Continental Crust: Its Composition and Evolution[M].Oxford,UKBlackwell Scientific Publications198546.

[本文引用: 2]

Mclennan S M.

Relationships between the trace element composition of sedimentary rocks and upper continental crust

[J].Geochemistry Geophysics Geosystems,200124):GC000109.

[本文引用: 2]

Gallet SJahn BVan Vliet Lano Bet al.

Loess geochemistry and its implications for particle origin and composition of the upper continental crust

[J].Earth and Planetary Science Letters,19981563/4):157-172.

[本文引用: 2]

Taylor S RMcLennan S MMcCulloch M T.

Geochemistry of loess,continental crustal composition and crustal model ages

[J].Geochimica et Cosmochimica Acta,19834711):1897-1905.

[本文引用: 1]

Nesbitt H WYoung G M.

Early Proterozoic climates and plate motions inferred from major element chemistry of lutites

[J].Nature,19822995885):715-717.

[本文引用: 3]

曾方明.

九江下蜀黄土和红土的化学风化特征

[J].盐湖研究,2018261):27-33.

[本文引用: 1]

McLennan S M.

Weathering and global denudation

[J].The Journal of Geology,1993101295-303.

[本文引用: 1]

冯连君储雪蕾张启锐.

化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用

[J].地学前缘,2003104):539-544.

[本文引用: 2]

Nesbitt H WMarkovics GPrice R C.

Chemical processes affecting alkalis and alkaline earths during continental weathering

[J].Geochimica et Cosmochimica Acta,19804411):1659-1666.

[本文引用: 1]

Hao Q ZGuo Z TQiao Y Set al.

Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China

[J].Quaternary Science Reviews,20102923/24):3317-3326.

[本文引用: 2]

Chen JJi J FQiu Get al.

Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence,China

[J].Science in China (Series D),1998413):235-241.

[本文引用: 1]

顾兆炎.

中国北方风成堆积的风化作用与环境变迁:U-Th、10Be及元素地球化学的研究

[D].北京中国科学院地质与地球物理研究所1999.

[本文引用: 1]

郝青振.

陇西盆地晚第三纪风尘沉积的地层学研究

[D].北京中国科学院地质与地球物理研究所2001.

[本文引用: 1]

Bhatia M RCrook K A W.

Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins

[J].Contributions to Mineralogy and Petrology,1986922):181-193.

[本文引用: 1]

Han WMa ZLai Zet al.

Wind erosion on the north-eastern Tibetan Plateau:constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin

[J].Earth Surface Processes and Landforms,2014396):779-789.

[本文引用: 1]

Sun J M.

Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau

[J].Earth and Planetary Science Letters,2002203845-859.

[本文引用: 1]

/