Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (5): 1078-1085    DOI: 10.7522/j.issn.1000-694X.2017.00057
天气与气候     
青海湖高寒湿地生态系统生长季CH4通量
吴方涛1,2, 曹生奎1,2, 曹广超1,2, 汉光昭1, 林阳阳1, 成淑艳1
1. 青海师范大学 生命与地理科学学院, 青海 西宁 810008;
2. 青海师范大学 青海省自然地理与环境过程重点实验室, 青海 西宁 810008
CH4 Flux Characteristics of Qinghai Lake Alpine Wetland Ecosystem during Growing Season
Wu Fangtao1,2, Cao Shengkui1,2, Cao Guangchao1,2, Han Guangzhao1, Lin Yangyang1, Cheng Shuyan1
1. College of Life and Geography Sciences, Qinghai Normal University, Xining 810008, China;
2. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Qinghai Normal University, Xining 810008, China
 全文: PDF 
摘要: 利用涡度相关法研究青海湖高寒湿地生态系统2015-2016年生长季CH4通量。结果显示:生长季CH4通量表现为白天排放、夜间微弱吸收或排放的日变化特征,其中2015年CH4通量日平均值为56.67 mg·m-2,2016年CH4通量日平均值为35.92 mg·m-2。7月和8月排放量最大,生长季前期和后期排放较弱,2015年最大排放量出现在7月,为3.76 g·m-2,2016最大排放量出现在8月,为1.67 g·m-2。温度、电导率、土壤体积含水量与CH4通量显著相关,气温和CH4通量线性正相关。生态系统总初级生产力和呼吸及水热通量与CH4通量也存在显著的相关关系,其中生态系统总初级生产力和呼吸是影响甲烷动态变化的主要因子。
关键词: 青海湖高寒湿地甲烷通量涡度相关    
Abstract: Taking the Qinghai Lake alpine wetland ecosystem as the research object, the CH4 flux of 2015 and 2016 years was studied using the eddy covariance method. Results show that the average diurnal variation of CH4 emission in the daytime and weakly absorbed or emissioned at night, with daily average value was 56.67 mg·m-2 in 2015, and the value was 35.92 mg·m-2 in 2016. July and August of the growing season wre the largest monthly emissions, while emissions were weaker in the early and late growth season. The maximum monthly emission in 2015 was in July, with a value of 3.76 g·m-2, 2016 the maximum monthly emission occurred in August with a value of 1.67 g·m-2. There was a significant correlation between temperature, soil conductivity, soil volume water content and CH4 flux, among them the air temperature is liningly related to CH4 flux. There was also a significant correlation between total primary productivity, respiration, hydrothermal flux and CH4 flux, and the primary productivity and respiration of ecosystems were the main factors affecting the dynamic change of methane.
Key words: Qinghai Lake    alpine wetland    methane flux    eddy covariance
收稿日期: 2017-04-16 出版日期: 2018-11-03
ZTFLH:  X171  
基金资助: 国家自然科学基金项目(31260130);中国科学院"西部之光"人才计划项目(科发人教字[2012]179号);中国博士后基金项目(2013M542400);教育部科学技术重点研究项目和青海省重点实验室平台建设项目(2014-Z-Y24,2015-Z-Y01)
通讯作者: 曹生奎(E-mail:caoshengkui@163.com)     E-mail: caoshengkui@163.com
作者简介: 吴方涛(1991-),男,河南商丘人,硕士研究生,主要从事全球变化生态学及陆地生态系统碳循环方面的研究。E-mail:wuft1991@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴方涛
曹生奎
曹广超
汉光昭
林阳阳
成淑艳

引用本文:

吴方涛, 曹生奎, 曹广超, 汉光昭, 林阳阳, 成淑艳. 青海湖高寒湿地生态系统生长季CH4通量[J]. 中国沙漠, 2018, 38(5): 1078-1085.

Wu Fangtao, Cao Shengkui, Cao Guangchao, Han Guangzhao, Lin Yangyang, Cheng Shuyan. CH4 Flux Characteristics of Qinghai Lake Alpine Wetland Ecosystem during Growing Season. Journal of Desert Research, 2018, 38(5): 1078-1085.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2017.00057        http://www.desert.ac.cn/CN/Y2018/V38/I5/1078

[1] 郝庆菊,王跃思,江长胜,等.湿地甲烷排放研究若干问题的探讨[J].生态学杂志,2005,24(2):170-175.
[2] Keppler F,Hamilton J T,Brass M,et al.Methane emissions from terrestrial plants under aerobic conditions[J].Nature,2006,439(7073):187-91.
[3] 高升华.长江滩地杨树人工林甲烷通量研究[D].北京:中国林业科学研究院,2012.
[4] Khalil M A K.Atmospheric Methane:Its Role in the Global Environment[M].New York,USA:Springer,2000:1-8.
[5] Houghton J T,Ding Y,Griggs D J,et al.Climate Change 2001:the Scientific Basis[M].Cambridge,UK:Cambridge University Press,2001:944.
[6] Hirota M,Tang Y H,Hu Q W,et al.Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland[J].Soil Biology & Biochemistry,2004,36(5):737-748.
[7] 邢宇,姜琦刚,李文庆,等.青藏高原湿地景观空间格局的变化[J].生态环境学报,2009,18(3):1010-1015.
[8] Zhao Z L,Zhang Y L,Liu L S,et al.Recent changes in wetlands on the Tibetan Plateau:a review[J].Journal of Geographical Sciences,2015,25(7):879-896.
[9] 金会军,程国栋,徐柏青,等.青藏高原花石峡冻土站高寒湿地CH4排放研究[J].冰川冻土,1998,20(2):172-174.
[10] Chen H,Wu N,Yao S P,et al.Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai-Tibetan Plateau[J].Environmental Monitoring & Assessment,2010,164(1):21-28.
[11] Chen H,Wu N,Wang Y F,et al.Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau:a three-year study[J].Plos One,2013,8(1):e53878.
[12] 陈槐,高永恒,姚守平,等.若尔盖高原湿地甲烷排放的时空异质性[J].生态学报,2008,28(7):3425-3437.
[13] Peltola O,Mammarella I,Haapanala S,et al.Field intercomparison of four methane gas analyzers suitable for eddy covariance flux measurements[J].Biogeosciences Discussions,2012,9(6):17651-17706.
[14] 高升华,张旭东,汤玉喜,等.滩地人工林幼林不同时间尺度CH4通量变化特征——基于涡度相关闭路系统的研究[J].生态学报,2016,36(18):5912-5921.
[15] 贾庆宇,刘晶淼,梁成华,等.辽河三角洲稻区近地层CH4浓度与通量特征[J].生态环境学报,2015,24(5):804-810.
[16] 陈克龙,李双成,周巧富,等.近25年来青海湖流域景观结构动态变化及其对生态系统服务功能的影响[J].资源科学,2008,30(2):274-280.
[17] 李春,何洪林,刘敏,等.ChinaFLUX CO2通量数据处理系统与应用[J].地球信息科学,2008,10(5):557-565.
[18] Webb E K,Pearman G I,Leuning R,et al.Correction of flux measurements for density effects due to heat and water vapor transfer[J].Quarterly Journal of the Royal Meteorological Society,1980,106:85-100.
[19] 王春林,周国逸,王旭,等.复杂地形条件下涡度相关法通量测定修正方法分析[J].中国农业气象,2007,28(3):233-240.
[20] Cao S K,Cao G C,Feng Q,et al.Alpine wetland ecosystem carbon sink and its controls at the Qinghai Lake[J].Environmental Earth Sciences,2017,76:210.
[21] Hinojo-Hinojo C,Castellanos A E,Rodriguez J C,et al.Carbon and water fluxes in an exotic buffelgrass savanna[J].Rangeland Ecology & Management,2016,69(5):334-341.
[22] Reichstein M,Falge E,Baldocchi D,et al.On the separation of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm[J].Global Change Biology,2005,11(9):1424-1439.
[23] Pullens J W M,Sottocornola M,Kiely G,et al.Carbon fluxes of an alpine peatland in Northern Italy[J].Agricultural & Forest Meteorology,2016,220:69-82.
[24] 黄璞祎,于洪贤,柴龙会,等.扎龙芦苇湿地生长季的甲烷排放通量[J].应用生态学报,2011,22(5):1219-1224.
[25] Mikkelä C,Sundh I,Svensson B H,et al.Diurnal variation in methane emission in relation to the water table,soil temperature,climate and vegetation cover in a Swedish acid mire[J].Biogeochemistry,1995,28(2):93-114.
[26] Nakano T,Kuniyoshi S,Fukuda M.Temporal variation in methane emission from tundra wetlands in a permafrost area,northeastern Siberia[J].Atmospheric Environment,2000,34(8):1205-1213.
[27] Grünfeld S,Brix H.Methanogenesis and methane emissions:effects of water table,substrate type and presence of Phragmites australis[J].Aquatic Botany,1999,64(1):63-75.
[28] 高冠龙,张小由,常宗强,等.植物气孔导度的环境响应模拟及其尺度扩展[J].生态学报,2016,36(6):1491-1500.
[29] Pataki D E,Oren R,Katul G,et al.Canopy conductance of Pinus taeda,Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions[J].Tree Physiology,1998,18(5):307.
[30] Morrissey L A,Zobel D B,Livingston G P,et al.Significance of stomatal control on methane release from carex dominated wetlands[J].Chemosphere,1993,26(1/2/3/4):339-355.
[31] Schimel J P,Gulledge J.Microbial community structure and global trace gases[J].Global Change Biology,1998,4(7):745-758.
[32] Ding W X,Cai Z C,Wang D X.Preliminary budget of methane emissions from natural wetlands in China[J].Atmospheric Environment,2004,38(5):751-759.
[33] Whiting G J,Chanton J P.Plant-dependent CH4 emission in a subarctic Canadian fen[J].Global Biogeochemical Cycles,1992,6(3):225-231.
[34] Westermann P.Temperature regulation of methanogenesis in wetlands[J].Chemosphere,1993,26(1/2/3/4):321-328.
[35] 姚守平,罗鹏,王艳芬,等.湿地甲烷排放研究进展[J].世界科技研究与发展,2007,29(2):58-63.
[36] Torn M S,Chapin F S.Environmental and biotic controls over methane flux from Arctic tundra[J].Chemosphere,1993,26(1):357-368.
[37] Cao M K,Marshall S,Gregson K.Global carbon exchange and methane emissions from natural wetlands:application of a process-based model[J].Journal of Geophysical Research Atmospheres,1996,1011:14399-14414.
[38] 杨梅学,姚檀栋,何元庆.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报,2002,20(5):553-558.
[39] 王晓龙,张寒,姚志生,等.季节性冻结高寒泥炭湿地非生长季甲烷排放特征初探[J].气候与环境研究,2016,21(3):282-292.
[40] Ding W X,Cai Z C,Tsuruta H R.Factors affecting seasonal variation of methane concentration in water in a freshwater marsh vegetated with Carex Lasiocarpa[J].Biology and Fertility of Soils,2005,41(1):1-8.
[41] Rask H,Schoenau J,Anderson D.Factors influencing methane flux from a boreal forest wetland in Saskatchewan,Canada[J].Soil Biology & Biochemistry,2002,34(4):435-443.
[42] Wassmann R,Neue H U,Bueno C,et al.Methane production capacities of different rice soils derived from inherent and exogenous substrates[J].Plant and Soil,1998,203(2):227-237.
[43] 刘辉志,涂钢,董文杰.半干旱地区地气界面水汽和二氧化碳通量的日变化及季节变化[J].大气科学,2006,30(1):108-118.
[44] Grayson R B,Western A W,Chiew F H S.Preferred states in spatial soil moisture patterns:local and nonlocal controls[J].Water Resources Research,1997,33(12):2897-2908.
[45] Sass R L,Fisher F M,Harcombe P A.Methane production and emission in a Texas rice field[J].Global Biogeochemical Cycles,1990,4(1):47-68.
[46] Carol M R,Freeman C.Methane release from peat soils:effects of Sphagnum and Juncus[J].Soil Biology & Biochemistry,1999,31(2):323-325.
[47] 张果,周广胜,阳伏林.内蒙古温带荒漠草原生态系统水热通量动态[J].应用生态学报,2010,21(3):597-603.
[48] Heisle J L,Weltzin J F.Variability matters:towards a perspective on the influence of precipitation on terrestrial ecosystems[J].New Phytologist,2006,172(2):189-92.
[49] 王德宣,吕宪国,丁维新,等.若尔盖高原沼泽湿地CH4排放研究[J].地球科学进展,2002,17(6):877-880.
[50] 金会军,吴杰,程国栋,等.青藏高原湿地CH4排放评估[J].科学通报,1999,44(16):1758-1762.
[51] IPCC.Climate Change The Physical Science Basis[J].Combridge,UK:Cambridge University Press,2007:123-124.
[52] 张法伟,李英年,曹广民,等.青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子[J].植物生态学报,2012,36(3):187-198.
[1] 陈骥, 姜在兴, 张万益, 刘超, 许文茂. “源汇”沉积体系主导下的现代风成相发育模式探讨:以青海湖东岸为例[J]. 中国沙漠, 2018, 38(5): 999-1008.
[2] 李腾飞, 李金凤, 鲁瑞洁, 刘小槺, 陈璐. 青海湖东岸沙地风成沉积物粒度敏感组分及其古气候意义[J]. 中国沙漠, 2017, 37(5): 878-884.
[3] 曹生奎, 曹广超, 陈克龙, 冯起, 李忠勤, 张静, 汉光昭, 林阳阳. 青海湖高寒湿地生态系统CO2通量和水汽通量间的耦合关系[J]. 中国沙漠, 2016, 36(5): 1286-1295.
[4] 杨洁, 刘冉, 马杰, 唐立松, 李彦. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落土壤呼吸对生态系统呼吸的贡献[J]. 中国沙漠, 2016, 36(3): 726-733.
[5] 姚正毅, 李晓英, 肖建华. 青海湖滨土地沙漠化驱动机制[J]. 中国沙漠, 2015, 35(6): 1429-1437.
[6] 张涛, 曹广超, 曹生奎, 陈克龙, 山中雪, 张静. 2000-2012年青海湖流域NPP时空分布特征[J]. 中国沙漠, 2015, 35(4): 1072-1080.
[7] 赵超, 鲁瑞洁, 李金凤. 青海湖流域土地沙漠化及表土粒度特征[J]. 中国沙漠, 2015, 35(2): 276-283.
[8] 曹生奎, 曹广超, 陈克龙, 刘蔚, 陈志, 芦宝良, 张涛, 王记明, 张静. 青海湖高寒湿地生态系统服务价值动态[J]. 中国沙漠, 2014, 34(5): 1402-1409.
[9] 马虹, 陈亚宁, 李卫红. 荒漠河岸柽柳(Tamarix chinensis)灌丛的能量平衡特征[J]. 中国沙漠, 2014, 34(1): 108-117.
[10] 周琪, 李平衡, 王权, 郑超磊, 徐璐. 西北干旱区荒漠生态系统通量贡献区模型研究[J]. 中国沙漠, 2014, 34(1): 98-107.
[11] 张金龙1, 陈 英1, 葛劲松2, 聂学敏2. 1977—2010年青海湖环湖区土地利用/覆盖变化与土地资源管理[J]. 中国沙漠, 2013, 33(4): 1256-1266.
[12] 王文玉1,2,3, 杨沈斌2, 张 强1,3, 吕开龙2, 孙翔宇2, 肖 雯2, 胡 勇2. 近50年环青海湖高寒地区和环鄱阳湖湿润地区潜在蒸散变化比较分析[J]. 中国沙漠, 2013, 33(3): 866-873.
[13] 田丽慧1, 张登山1,2, 胡梦珺3, 鲁瑞洁1. 1976—2007年青海省刚察县土地沙漠化驱动力分析[J]. 中国沙漠, 2013, 33(2): 493-500.
[14] 尚 媛1, 鲁瑞洁1, 贾飞飞1, 田丽慧1, 唐清亮2, 陈 原1, 赵 超1, 吴汪洋1. 青海湖湖东风成剖面化学元素特征及其环境指示意义[J]. 中国沙漠, 2013, 33(2): 463-469.
[15] 展秀丽1, 严 平2*. 青海湖流域防沙治沙生态效益现状评价及分析[J]. 中国沙漠, 2012, 32(6): 1773-1778.