Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (4): 197-205    DOI: 10.7522/j.issn.1000-694X.2020.00057
    
石羊河流域人工防护林碳效益估算
王新友1,2(),马全林1(),王耀琳1
1.甘肃省治沙研究所 甘肃省荒漠化与风沙灾害防治国家重点实验室培育基地,甘肃 兰州 730070
2.甘肃广播电视大学,甘肃 兰州 730030
Carbon benefits evaluation of the artificial shelter forest in the Shiyanghe River Basin
Xinyou Wang1,2(),Quanlin Ma1(),Yaolin Wang1
1.State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China
2.Gansu Radio & TV University, Lanzhou 730030, China
 全文: PDF(1989 KB)   HTML
摘要:

人工植被建设具有显著的碳汇作用,是固定CO2以缓解气候变化的最有效措施。为揭示固沙造林对沙漠生态系统碳汇的影响,以甘肃省森林资源二类清查数据(2016年)为基础,应用CBP(Carbon Benefits Project)碳计量模型工具,研究了干旱地区石羊河流域人工防护林的碳效益。结果表明:石羊河流域人工固沙林当前总碳储量为0.81 Tg,价值2.03亿元;每公顷年固碳0.45 Mg,价值113.13元;在0~100 a时间尺度上,最大固碳潜力为2.19 Tg,价值5.51亿元。绿洲防护林当前的总碳储量是2.51 Tg,价值6.31亿元;每公顷年固碳5.2 Mg,价值1307.28元;在0~50 a时间尺度上,最大固碳潜力是3.03 Tg,价值7.62亿元。在0~100 a时间尺度上,石羊河流域人工固沙林的碳效益呈快速增长(0~25 a)-急速下降(25~30 a)-缓慢下降(35~100 a)的向上单峰型变化趋势。绿洲防护林的碳效益随林龄在0~50 a时间尺度上呈持续增加的变化趋势。固沙林的衰败死亡是降低人工固沙林碳效益的重要因素,随着年死亡率从2.5%降低到2.0%、1.0%、0%,39 a林龄的人工固沙林碳效益(总碳储量、碳密度和固碳速率)分别增长1.51、2.54、3.56倍。“退耕还林”措施显著提升人工固沙林碳效益,“退耕还林”66 667 hm2、133 334 hm2下39 a林龄的人工固沙林碳储量分别增长6.27、25.59倍,碳密度分别增长2.50、6.44倍,固碳速率分别增加2.67、6.67倍。因此,固沙造林是增加沙漠生态系统碳汇的有效措施,提升人工固沙林碳汇效益的主要途径就是保证其生长发育,避免衰败和死亡。为了避免将来变成典型的碳源,增加温室气体排放,石羊河流域人工固沙林亟待科学保育和重新恢复。

关键词: CBP碳计量模型碳储量固碳速率人工固沙林人工防护林    
Abstract:

Artificial vegetation construction is considered effective options for carbon dioxide sequestration to mitigate the impact of climate change. Based on the CBP (Carbon Benefits Project) carbon measurement model, the efficiency of artificial shelter forest in Shiyanghe River Basin in carbon sequestration was studied using the secondary inventory data of forest resources in Gansu Province (2016). The results show that the total carbon storage of sand-fixing plantation in Shiyanghe River Basin is 0.81 Tg C, with a value of 203 million RMB. The annual carbon sequestration per hectare is 0.45 Mg, with a value of 113.13 RMB. The maximum carbon sequestration potential is 2.19 Tg C on the 0-100 years scale, with a value of 551 million RMB. The total carbon storage of oasis shelterbelt in Shiyang River Basin is 2.51 Tg C, with a value of 631 million RMB. The annual carbon sequestration per hectare is 5.2 Mg, with a value of 1307.28 RMB. The maximum carbon sequestration potential is 3.03 Tg C on the 0-50 years scale, with a value of 762 million RMB. On the 0-100 years scale, the carbon sequestration benefits of the sand-fixing plantation in Shiyang River basin changed significantly with the planting years. The carbon storage showed rapid growth (0-25 years), rapid decline (25-30 years), slow decline (35-100 years), with an upwardly unimodal-type change trend. The carbon sequestration benefits of the oasis shelterbelt in Shiyang River basin showed sustained growth. The death rate is the most important factor affecting carbon sequestration efficiency of the plantation in Shiyang River Basin. With the annual death rate dropped from the rates of 2.5% to 2%, 1% and 0, after 39 years, its carbon benefits are respectively 1.51, 2.54 and 3.56 times that of the original sand-fixing plantation in the 39th year. The management measures of Grain for Green Project can significantly improve the carbon sequestration efficiency of the plantation in Shiyang River Basin. With the Grain for Green Project progressing at the area of 66 667 hm2 and 133 334 hm2, after 39 years, its carbon reserves are respectively 6.27 and 25.59 times, its carbon density are respectively 2.50 and 6.44 times, its carbon sequestration rate are respectively 2.67 and 6.67 times that of the original sand-fixing plantation in the 39th year. Therefore, sand fixation afforestation is an effective measure to increase carbon sink of desert ecosystem. It is necessary to strengthen the management and protection of sand-fixing plantation and the restoration of degraded forest to maximize its carbon benefit and avoid becoming a typical carbon source in the future.

Key words: CBP (Carbon Benefits Project) carbon measurement model    carbon storage    carbon sequestration rate    sand-fixing plantation    artificial shelter forest
收稿日期: 2020-01-03 出版日期: 2020-09-01
ZTFLH:  S713  
基金资助: 国家自然科学基金项目(31660232);甘肃省科技重大专项(18ZD2FA009);甘肃省基础研究创新群体项目(145RJIA335)
通讯作者: 马全林     E-mail: 254950602@ qq.com;mql925@126.com
作者简介: 王新友(1981—),男,甘肃静宁人,博士,副教授,主要从事荒漠生态学研究。E-mail: 254950602@ qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王新友
马全林
王耀琳

引用本文:

王新友,马全林,王耀琳. 石羊河流域人工防护林碳效益估算[J]. 中国沙漠, 2020, 40(4): 197-205.

Xinyou Wang,Quanlin Ma,Yaolin Wang. Carbon benefits evaluation of the artificial shelter forest in the Shiyanghe River Basin. Journal of Desert Research, 2020, 40(4): 197-205.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00057        http://www.desert.ac.cn/CN/Y2020/V40/I4/197

图1  CBP模型工具的基本结构图
图2  碳效益估算流程图
图3  石羊河流域人工防护林分布
图4  石羊河流域各县(区)人工固沙林面积(数据来源:甘肃省森林资源二类清查数据)
林种类型面积/hm2占林种 比例/%占总人工防护林的比例/%
乔木林沙枣6 808.7255.9813.23
杨属3 771.6731.017.33
胡杨559.264.601.09
榆树483.893.980.94
其他乔木540.044.441.05
灌木林梭梭31 644.2280.5661.51
花棒2 894.597.375.63
柠条1 382.433.522.69
柽柳1 866.84.753.63
沙拐枣720.571.831.40
枸杞269.150.690.52
其他灌木540.041.280.98
表1  石羊河流域人工防护林树种组成
种植年限/a总碳储量/Mg碳密度/(Mg·hm-2)固碳速率/(Mg·hm-2·a-1)不确定度/%
10-600 140-13-1.328
15-900 208-20-1.326
20-1 200 280-26-1.324
25-2 195 448-48-1.917
30-995 113-22-0.7224
35-892 566-19-0.5523
39-810 504-18-0.4523
50-584 770-13-0.2523
60-379 610-8.2-0.1422
70-174 529-3.8-0.0522
8030 6380.670.0122
90235 7945.10.0621
100440 9479.60.121
表2  石羊河流域人工固沙林碳效益随林龄(0~100 a)的动态变化
种植年限/a总碳储量/Mg碳密度/(Mg·hm-2)固碳速率/(Mg·hm-2·a-1)不确定度/%
10-730 934-60-6.0023
20-1 461 874-120-6.0018
30-1 983 658-163-5.4017
40-2 505 442-206-5.2017
50-3 027 228-249-5.0017
表3  石羊河流域绿洲防护林碳效益随种植年限(0~50 a)的动态变化
年死亡率/%总碳储量/Mg碳密度/(Mg·hm-2)固碳速率/(Mg·hm-2·a-1)不确定度/%
2.5-810 504-18-0.4523
2-1 226 025-27-0.6824
1-2 056 905-45-1.124
0-2 887 784-63-1.622
表4  不同死亡率情景下人工固沙林的固碳潜力
退耕还林面积/hm2总碳储量/Mg碳密度/(Mg·hm-2)固碳速率/(Mg·hm-2·a-1)不确定度/%
66 667-5 082 256-45-1.218
133 334-20 737 708-116-321
表5  退耕还林管理措施下的人工固沙林固碳潜力
1 Foley J A,Defries R,Asner G P,et al.Global consequences of land use[J].Science,2005,309:570-574.
2 史军,刘纪远,高志强,等.造林对陆地碳汇影响的研究进展[J].地理科学进展,2004,23(2):58-67.
3 Lu F,Hu H F,Sun W J,et al.Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(16):4039-4044.
4 Yang H T,Li X R,Wang Z R,et al.Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert,northern China[J].Science of the Total Environment,2014,478:1-11.
5 张学斌,石培基,罗君.基于生态系统服务价值变化的生态经济协调发展研究:以石羊河流域为例[J].中国沙漠,2014,34(1):268-274.
6 Fan B L,Zhang A P,Yang Y,et al.Long-term effects of xerophytic shrub Haloxylon ammodendron plantations on soil properties and vegetation dynamics in northwest China[J].PLoS ONE,2016,11(12):e0168000.
7 马全林,徐丽恒,陈芳,等.干旱区沙漠化逆转过程植被-土壤碳储量的恢复演变规律研究[J].地球科学前沿,2018,8(1):48-59.
8 Milne E,Paustian K,Easter M,et al.Estimating the carbon benefits of sustainable land management projects:the carbon benefits project component A[C]//2010
8 19th World Congress of Soil Science,Soil solutions for a Changing World.Brisbane,Australia.Congress Symposium 4:Greenhouse gases from soils.2010:73-75.
9 Wang Y L,Zhao C Y,Ma Q L,et al.Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis,Gansu:a case study on application of the CBP model[J].Journal of Environmental Management,2015,157:303-310.
10 肖寒,欧阳志云,赵景柱,等.森林生态系统服务功能及其生态经济价值评估初探:以海南岛尖峰岭热带森林为例[J].应用生态学报,2000(4):2-5.
11 Woomer P L,Touré A,Sall M.Carbon stocks in senegal's sahel transition zone[J].Journal of Arid Environments,2004,59(3):499-510.
12 Ni J.Carbon storage in terrestrial ecosystems of China:estimates at different spatial resolutions and their responses to climate change[J].Climatic Change,2001,49(3):339-358.
13 张冬梅.阿拉善荒漠灌木群落碳收支及影响因子分析研究[D].呼和浩特:内蒙古农业大学,2012.
14 Li Y Q,Chen Y P,Wang X Y,et al.Improvements in soil carbon and nitrogen capacities after shrub planting to stabilize sand dunes in China’s Horqin Sandy Land[J].Sustainability,2017,9(4):662.
15 李春萍.内蒙古毛乌素沙地不同生境油蒿(Artemisia ordosica Krasch.)灌丛地碳动态研究[D].北京:中国科学院植物研究所,2006.
16 Grünzweig J M,Lin T L,Rotenberg E,et al.Carbon sequestration in arid-land forest[J].Global Change Biology,2003,9(5):791-799.
17 Liu X P,Zhang W J,Cao J S,et al.Carbon sequestration of plantation in Beijing-Tianjin sand source areas[J].Journal of Mountain Science,2018,15(10):2148-2158.
18 李娇.毛乌素沙地榆林沙区典型固沙林地碳汇效应与机制研究[D].陕西杨凌:西北农林科技大学,2017.
19 孙特生,李文彦,刘继亮.黑河中游荒漠绿洲人工梭梭土壤养分特征[J].干旱区资源与环境,2017,31(5):179-185.
20 Li X J,Li X R,Wang X P,et al.Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the Tengger Desert,northern China[J].European Journal of Soil Science,2016,67(2):184-195.
21 Li Y Q,Zhao X Y,Wang S K,et al.Carbon accumulation in the bulk soil and different soil fractions during the rehabilitation of desertified grassland in Horqin Sandy Land (Northern China)[J].Polish Journal of Ecology,2015,63(1):88-101.
22 刘任涛,朱凡.人工与自然恢复方式对流动沙地土壤与植被特征的影响[J].水土保持通报,2015,35(6):1-7.
23 Deng L,Yan W M,Zhang Y W,et al.Severe depletion of soil moisture following land-use changes for ecological restoration:Evidence from northern China[J].Forest Ecology and Management,2016,366:1-10.
24 Prietzel J,Bachmaan S.Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir,Douglas fir/spruce,or European beech stands at different sites in Southern Germany[J].Forest Ecology and Management,2012,269:134-148.
25 Hong S B,Piao S L,Chen A P,et al.Afforestation neutralizes soil pH[J].Nature Communications,2018,9:520.
26 李琬婷,杨艺宁,程小毛,等.昆明市16种道路绿化树种秋季固碳释氧能力研究[J].西南林业大学学报,2018,38(4):76-82.
[1] 孔君洽, 杜泽玉, 杨荣, 苏永中. 黑河中游土地利用/覆被变化及其对碳储量影响的预测[J]. 中国沙漠, 2019, 39(3): 87-97.
[2] 何芳兰, 金红喜, 郭春秀, 马俊梅, 吴昊. 民勤绿洲边缘人工梭梭(Haloxylon ammodendron)林衰败过程中植被组成动态及群落相似性[J]. 中国沙漠, 2017, 37(6): 1135-1141.
[3] 于洋, 贾志清, 朱雅娟, 赵淑伶, 刘海涛, 李清雪, 魏登贤. 高寒沙地乌柳(Salix cheilophila)林根系分布特征[J]. 中国沙漠, 2014, 34(1): 67-74.
[4] 张雪妮, 吕光辉, 贡 璐, 秦 璐, 李尝君, 孙景鑫, 任曼丽. 新疆艾比湖湿地自然保护区不同土壤类型无机碳分布特征[J]. 中国沙漠, 2013, 33(4): 1084-1090.
[5] 闫德仁. 内蒙古沙区森林及其碳储量估算[J]. 中国沙漠, 2012, 32(2): 564-567.