中国沙漠 ›› 2022, Vol. 42 ›› Issue (4): 139-150.DOI: 10.7522/j.issn.1000-694X.2022.00001
• • 上一篇
收稿日期:
2021-09-26
修回日期:
2022-01-13
出版日期:
2022-07-20
发布日期:
2022-08-29
通讯作者:
张定海
作者简介:
张定海(E-mail: zhangdh@gsau.edu.cn)基金资助:
Mingna Wang1(), Dinghai Zhang2(
), Zhishan Zhang3, Lining Lu2
Received:
2021-09-26
Revised:
2022-01-13
Online:
2022-07-20
Published:
2022-08-29
Contact:
Dinghai Zhang
摘要:
古尔班通古特沙漠是中国第二大沙漠,也是中国固定和半固定沙丘主要分布区,固沙灌木种较多。冠幅不仅是反映固沙灌木可视化的重要参数,也是反映沙漠植被生长情况的重要变量。以3种沙丘(固定沙丘、半固定沙丘和流动沙丘)上主要固沙灌木为研究对象,利用12种基础模型、BP(Backpropagation Neural Network)神经网络和支持向量机(Support Vector Machine,SVM)机器学习算法建立了基于固沙灌木株高和冠长率的冠幅预测模型,同时将两种机器学习算法拟合结果与基础模型进行比较,最终选出了适合研究区的冠幅预测模型。结果表明:(1)不同沙丘类型和不同灌木种类的最优冠幅预测模型不同,且固定沙丘和半固定沙丘模型优于流动沙丘。3种沙丘类型最优拟合为M2(Quadratic Model)模型;(2)白梭梭(Haloxylon persicum)在半固定沙丘和流动沙丘上拟合的最优模型分别为M2、M7(Gompertz),沙拐枣(Calligonum mongolicum)最优模型为M2,蛇麻黄(Ephedra distachya)和油蒿(Artemisia ordosica)在半固定沙丘和流动沙丘上拟合较优模型分别为M2、M7。总体来说,基础模型M2和M7可以较好地预测不同类型的灌木冠幅值;(3)基于径向基(Radial Basis Function)核函数的支持向量回归机的冠幅预测模型明显优于BP神经网络模型。
中图分类号:
王明娜, 张定海, 张志山, 路丽宁. 古尔班通古特沙漠灌木冠幅预测模型[J]. 中国沙漠, 2022, 42(4): 139-150.
Mingna Wang, Dinghai Zhang, Zhishan Zhang, Lining Lu. Canopy width prediction models for the Gurbantunggut Desert[J]. Journal of Desert Research, 2022, 42(4): 139-150.
沙丘 类型 | 固沙 灌木 | 数量 /株 | 冠幅 /m | 株高 /m | 冠长率 |
---|---|---|---|---|---|
固定 沙丘 | 全部 | 2 344 | 0.56±0.48 | 0.74±0.58 | 0.85±0.87 |
白梭梭 | 1 142 | 0.64±0.46 | 0.91±0.58 | 0.81±1.08 | |
梭梭 | 1 202 | 0.48±0.48 | 0.58±0.53 | 0.89±0.62 | |
半固定 沙丘 | 全部 | 1 651 | 0.48±0.43 | 0.42±0.44 | 1.18±0.55 |
白梭梭 | 169 | 0.92±0.72 | 1.20±0.90 | 0.81±0.43 | |
沙拐枣 | 268 | 0.78±0.34 | 0.45±0.16 | 1.79±0.73 | |
蛇麻黄 | 122 | 0.30±0.10 | 0.25±0.06 | 1.21±0.35 | |
油蒿 | 1 092 | 0.36±0.31 | 0.30±0.22 | 1.08±0.45 | |
流动 沙丘 | 全部 | 1 187 | 0.66±0.54 | 0.45±0.38 | 1.67±1.18 |
白梭梭 | 323 | 0.40±0.40 | 0.65±0.60 | 0.67±0.48 | |
沙拐枣 | 474 | 0.82±0.48 | 0.40±0.19 | 2.18±1.31 | |
蛇麻黄 | 63 | 1.75±0.76 | 0.47±0.18 | 3.81±1.53 | |
油蒿 | 327 | 0.46±0.28 | 0.32±0.18 | 1.52±0.73 |
表1 不同沙丘类型上固沙灌木的基本信息
Table 1 Basic information for sand-fixing shrubs on different types of sand dunes
沙丘 类型 | 固沙 灌木 | 数量 /株 | 冠幅 /m | 株高 /m | 冠长率 |
---|---|---|---|---|---|
固定 沙丘 | 全部 | 2 344 | 0.56±0.48 | 0.74±0.58 | 0.85±0.87 |
白梭梭 | 1 142 | 0.64±0.46 | 0.91±0.58 | 0.81±1.08 | |
梭梭 | 1 202 | 0.48±0.48 | 0.58±0.53 | 0.89±0.62 | |
半固定 沙丘 | 全部 | 1 651 | 0.48±0.43 | 0.42±0.44 | 1.18±0.55 |
白梭梭 | 169 | 0.92±0.72 | 1.20±0.90 | 0.81±0.43 | |
沙拐枣 | 268 | 0.78±0.34 | 0.45±0.16 | 1.79±0.73 | |
蛇麻黄 | 122 | 0.30±0.10 | 0.25±0.06 | 1.21±0.35 | |
油蒿 | 1 092 | 0.36±0.31 | 0.30±0.22 | 1.08±0.45 | |
流动 沙丘 | 全部 | 1 187 | 0.66±0.54 | 0.45±0.38 | 1.67±1.18 |
白梭梭 | 323 | 0.40±0.40 | 0.65±0.60 | 0.67±0.48 | |
沙拐枣 | 474 | 0.82±0.48 | 0.40±0.19 | 2.18±1.31 | |
蛇麻黄 | 63 | 1.75±0.76 | 0.47±0.18 | 3.81±1.53 | |
油蒿 | 327 | 0.46±0.28 | 0.32±0.18 | 1.52±0.73 |
模型 | 名称 | 表达式 | 模型 | 名称 | 表达式 |
---|---|---|---|---|---|
M1 | Linear | M7 | Gompertz | ||
M2 | Quadratic | M8 | Growth | ||
M3 | Power | M9 | Gauss | ||
M4 | Exponential | M10 | Mitscherlinch | ||
M5 | Logarithmic | M11 | Hossfeld | ||
M6 | Logistic | M12 | HossfeldⅠ |
表2 冠幅预测的基础模型
Table 2 Basic model of canopy width prediction
模型 | 名称 | 表达式 | 模型 | 名称 | 表达式 |
---|---|---|---|---|---|
M1 | Linear | M7 | Gompertz | ||
M2 | Quadratic | M8 | Growth | ||
M3 | Power | M9 | Gauss | ||
M4 | Exponential | M10 | Mitscherlinch | ||
M5 | Logarithmic | M11 | Hossfeld | ||
M6 | Logistic | M12 | HossfeldⅠ |
沙丘 类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
固定沙丘 | M1 | -0.090 | 0.736 | 11.580 | 0.793 | 0.216 | 0.001 | 23.91 | <0.001 | ||
M2 | -0.223 | 0.717 | 28.580 | 0.017 | -90.970 | 0.838 | 0.192 | 0.001 | 24.90 | <0.001 | |
M3 | 0.527 | 1.344 | 0.211 | 0.680 | 0.812 | 0.206 | 0.132 | 37.48 | <0.001 | ||
M6 | 2.228 | 23.370 | 1.767 | 68.660 | 0.817 | 0.203 | 0.124 | 34.21 | <0.001 | ||
M7 | 2.563 | 4.213 | 0.928 | 33.120 | 0.816 | 0.204 | 0.117 | 25.54 | <0.001 | ||
M10 | 445.100 | 0.002 | 0.016 | 0.782 | 0.222 | 0.140 | 36.42 | <0.001 | |||
半固定沙丘 | M1 | -0.278 | 0.818 | 35.430 | 0.886 | 0.144 | 0.092 | 44.82 | <0.001 | ||
M2 | -0.458 | 1.119 | 53.070 | -0.131 | -619.700 | 0.916 | 0.124 | 0.090 | 62.19 | <0.001 | |
M6 | 1.686 | 47.560 | 3.656 | 109.800 | 0.892 | 0.141 | 0.082 | 42.73 | <0.001 | ||
M7 | 1.924 | 5.998 | 1.786 | 58.250 | 0.905 | 0.132 | 0.073 | 25.51 | <0.001 | ||
M12 | 0.484 | 0.571 | -9.855 | 0.896 | 0.138 | 0.127 | 86.48 | <0.001 | |||
流动沙丘 | M1 | -0.280 | 0.836 | 33.710 | 0.714 | 0.288 | 0.179 | 38.26 | <0.001 | ||
M2 | -0.663 | 1.689 | 49.570 | -0.410 | -295.500 | 0.811 | 0.234 | 0.152 | 75.29 | <0.001 | |
M3 | 0.679 | 0.935 | 43.210 | 1.162 | 0.669 | 0.310 | 0.225 | 76.95 | <0.001 | ||
M6 | 1.849 | 39.620 | 2.880 | 101.600 | 0.748 | 0.270 | 0.166 | 37.89 | <0.001 | ||
M7 | 2.051 | 6.202 | 1.583 | 58.010 | 0.748 | 0.271 | 0.162 | 29.08 | <0.001 |
表3 3种沙丘上主要固沙灌木的冠幅预测模型拟合结果
Table 3 Fitting results of crown width prediction model for three main sand-fixing shrubs on sand dunes
沙丘 类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
固定沙丘 | M1 | -0.090 | 0.736 | 11.580 | 0.793 | 0.216 | 0.001 | 23.91 | <0.001 | ||
M2 | -0.223 | 0.717 | 28.580 | 0.017 | -90.970 | 0.838 | 0.192 | 0.001 | 24.90 | <0.001 | |
M3 | 0.527 | 1.344 | 0.211 | 0.680 | 0.812 | 0.206 | 0.132 | 37.48 | <0.001 | ||
M6 | 2.228 | 23.370 | 1.767 | 68.660 | 0.817 | 0.203 | 0.124 | 34.21 | <0.001 | ||
M7 | 2.563 | 4.213 | 0.928 | 33.120 | 0.816 | 0.204 | 0.117 | 25.54 | <0.001 | ||
M10 | 445.100 | 0.002 | 0.016 | 0.782 | 0.222 | 0.140 | 36.42 | <0.001 | |||
半固定沙丘 | M1 | -0.278 | 0.818 | 35.430 | 0.886 | 0.144 | 0.092 | 44.82 | <0.001 | ||
M2 | -0.458 | 1.119 | 53.070 | -0.131 | -619.700 | 0.916 | 0.124 | 0.090 | 62.19 | <0.001 | |
M6 | 1.686 | 47.560 | 3.656 | 109.800 | 0.892 | 0.141 | 0.082 | 42.73 | <0.001 | ||
M7 | 1.924 | 5.998 | 1.786 | 58.250 | 0.905 | 0.132 | 0.073 | 25.51 | <0.001 | ||
M12 | 0.484 | 0.571 | -9.855 | 0.896 | 0.138 | 0.127 | 86.48 | <0.001 | |||
流动沙丘 | M1 | -0.280 | 0.836 | 33.710 | 0.714 | 0.288 | 0.179 | 38.26 | <0.001 | ||
M2 | -0.663 | 1.689 | 49.570 | -0.410 | -295.500 | 0.811 | 0.234 | 0.152 | 75.29 | <0.001 | |
M3 | 0.679 | 0.935 | 43.210 | 1.162 | 0.669 | 0.310 | 0.225 | 76.95 | <0.001 | ||
M6 | 1.849 | 39.620 | 2.880 | 101.600 | 0.748 | 0.270 | 0.166 | 37.89 | <0.001 | ||
M7 | 2.051 | 6.202 | 1.583 | 58.010 | 0.748 | 0.271 | 0.162 | 29.08 | <0.001 |
模型 | 参 数 | 评价指标 | 模型检验P | |||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | ||
M1 | -0.0184 | 19.640 | 0.836 | 0.855 | 0.183 | 0.096 | 24.92 | <0.001 | ||
M2 | -0.0293 | 35.590 | 0.827 | -2 653.000 | 0.054 | 0.877 | 0.168 | 0.092 | 34.26 | <0.001 |
M3 | 8.4840 | 0.911 | 1.190 | 1.274 | 0.844 | 0.190 | 0.113 | 38.14 | <0.001 | |
M7 | 0.2730 | 4.301 | 297.300 | 9.932 | 0.856 | 0.183 | 0.099 | 27.53 | <0.001 | |
M10 | 99.1200 | 0.011 | 0.008 | 0.824 | 0.202 | 0.013 | 47.90 | <0.001 |
表4 固沙灌木梭梭的冠幅预测模型
Table 4 Prediction model of crown width of sand-fixing shrub Haloxylon ammodendron
模型 | 参 数 | 评价指标 | 模型检验P | |||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | ||
M1 | -0.0184 | 19.640 | 0.836 | 0.855 | 0.183 | 0.096 | 24.92 | <0.001 | ||
M2 | -0.0293 | 35.590 | 0.827 | -2 653.000 | 0.054 | 0.877 | 0.168 | 0.092 | 34.26 | <0.001 |
M3 | 8.4840 | 0.911 | 1.190 | 1.274 | 0.844 | 0.190 | 0.113 | 38.14 | <0.001 | |
M7 | 0.2730 | 4.301 | 297.300 | 9.932 | 0.856 | 0.183 | 0.099 | 27.53 | <0.001 | |
M10 | 99.1200 | 0.011 | 0.008 | 0.824 | 0.202 | 0.013 | 47.90 | <0.001 |
沙丘类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
固定沙丘 | M2 | 0.021 | 30.040 | 0.640 | -934.900 | 0.324 | 0.820 | 0.193 | 0.115 | 18.95 | <0.001 |
M3 | 1.346 | 0.561 | 1.217 | 1.461 | 0.797 | 0.205 | 0.135 | 28.39 | <0.001 | ||
M5 | 0.636 | 0.057 | 0.060 | 0.790 | 0.208 | 0.135 | 47.94 | <0.001 | |||
M6 | 0.211 | 22.000 | 797.600 | 16.720 | 0.790 | 0.209 | 0.122 | 23.09 | <0.001 | ||
M7 | 0.273 | 4.301 | 297.300 | 9.932 | 0.855 | 0.183 | 0.121 | 20.10 | <0.001 | ||
M9 | 0.211 | 0.187 | 0.166 | 0.085 | 0.794 | 0.220 | 0.102 | 19.75 | <0.001 | ||
半固定沙丘 | M1 | 0.649 | 80.090 | 0.766 | 0.915 | 0.209 | 0.161 | 21.27 | <0.001 | ||
M2 | 0.110 | 0.147 | 1.018 | -0.028 | 0.803 | 0.935 | 0.183 | 0.015 | 33.68 | <0.001 | |
M6 | 0.289 | 47.830 | 1 592.000 | 13.490 | 0.923 | 0.199 | 0.016 | 20.81 | <0.001 | ||
M7 | 0.430 | 5.643 | 675.600 | 5.699 | 0.924 | 0.197 | 0.016 | 18.05 | <0.001 | ||
M12 | 0.360 | -140.600 | 1.278 | 0.931 | 0.188 | 0.025 | 46.15 | <0.001 | |||
流动沙丘 | M1 | 0.019 | 32.750 | 0.585 | 0.878 | 0.139 | 0.008 | 48.74 | <0.001 | ||
M2 | 0.032 | 55.830 | 0.684 | -0.892 | 0.450 | 0.891 | 0.131 | 0.009 | 83.36 | <0.001 | |
M6 | 0.153 | 31.430 | 1 203.000 | 21.550 | 0.880 | 0.138 | 0.009 | 47.45 | <0.001 | ||
M7 | 0.182 | 4.839 | 602.300 | 10.740 | 0.884 | 0.135 | 0.008 | 29.54 | <0.001 | ||
M12 | 0.257 | -71.620 | 1.821 | 0.870 | 0.143 | 0.014 | 65.18 | <0.001 |
表5 固沙灌木白梭梭的冠幅预测模型
Table 5 Prediction model of crown width of sand-fixing shrub Haloxylon persicum
沙丘类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
固定沙丘 | M2 | 0.021 | 30.040 | 0.640 | -934.900 | 0.324 | 0.820 | 0.193 | 0.115 | 18.95 | <0.001 |
M3 | 1.346 | 0.561 | 1.217 | 1.461 | 0.797 | 0.205 | 0.135 | 28.39 | <0.001 | ||
M5 | 0.636 | 0.057 | 0.060 | 0.790 | 0.208 | 0.135 | 47.94 | <0.001 | |||
M6 | 0.211 | 22.000 | 797.600 | 16.720 | 0.790 | 0.209 | 0.122 | 23.09 | <0.001 | ||
M7 | 0.273 | 4.301 | 297.300 | 9.932 | 0.855 | 0.183 | 0.121 | 20.10 | <0.001 | ||
M9 | 0.211 | 0.187 | 0.166 | 0.085 | 0.794 | 0.220 | 0.102 | 19.75 | <0.001 | ||
半固定沙丘 | M1 | 0.649 | 80.090 | 0.766 | 0.915 | 0.209 | 0.161 | 21.27 | <0.001 | ||
M2 | 0.110 | 0.147 | 1.018 | -0.028 | 0.803 | 0.935 | 0.183 | 0.015 | 33.68 | <0.001 | |
M6 | 0.289 | 47.830 | 1 592.000 | 13.490 | 0.923 | 0.199 | 0.016 | 20.81 | <0.001 | ||
M7 | 0.430 | 5.643 | 675.600 | 5.699 | 0.924 | 0.197 | 0.016 | 18.05 | <0.001 | ||
M12 | 0.360 | -140.600 | 1.278 | 0.931 | 0.188 | 0.025 | 46.15 | <0.001 | |||
流动沙丘 | M1 | 0.019 | 32.750 | 0.585 | 0.878 | 0.139 | 0.008 | 48.74 | <0.001 | ||
M2 | 0.032 | 55.830 | 0.684 | -0.892 | 0.450 | 0.891 | 0.131 | 0.009 | 83.36 | <0.001 | |
M6 | 0.153 | 31.430 | 1 203.000 | 21.550 | 0.880 | 0.138 | 0.009 | 47.45 | <0.001 | ||
M7 | 0.182 | 4.839 | 602.300 | 10.740 | 0.884 | 0.135 | 0.008 | 29.54 | <0.001 | ||
M12 | 0.257 | -71.620 | 1.821 | 0.870 | 0.143 | 0.014 | 65.18 | <0.001 |
沙丘 类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
半固定沙丘 | M1 | -0.060 | 33.550 | 1.740 | 0.914 | 0.101 | 0.009 | 13.51 | <0.001 | ||
M2 | -0.093 | 61.640 | 2.185 | -6 652.000 | -5.849 | 0.937 | 0.086 | 0.007 | 15.63 | <0.001 | |
M4 | 0.012 | 446.500 | 21.760 | 0.904 | 0.107 | 0.014 | 24.51 | <0.001 | |||
M5 | 0.661 | 0.060 | 0.062 | 0.906 | 0.106 | 0.009 | 18.64 | <0.001 | |||
M7 | 0.344 | 5.638 | 319.400 | 16.400 | 0.928 | 0.092 | 0.009 | 13.04 | <0.001 | ||
M8 | -4.406 | 446.500 | 21.770 | 0.904 | 0.107 | 0.014 | 24.51 | <0.001 | |||
M12 | 0.158 | -27.890 | 1.363 | 0.905 | 0.107 | 0.016 | 24.75 | <0.001 | |||
流动沙丘 | M1 | -0.060 | 28.220 | 2.029 | 0.832 | 0.198 | 0.013 | 18.48 | <0.001 | ||
M2 | -0.102 | 50.730 | 2.700 | -3 261.000 | -7.165 | 0.893 | 0.158 | 0.010 | 23.20 | <0.001 | |
M5 | 0.723 | 0.065 | 0.070 | 0.824 | 0.202 | 0.014 | 37.35 | <0.001 | |||
M6 | 0.232 | 44.960 | 665.400 | 41.890 | 0.851 | 0.186 | 0.011 | 16.01 | <0.001 | ||
M7 | 0.281 | 6.239 | 334.000 | 21.940 | 0.847 | 0.189 | 0.011 | 15.54 | <0.001 |
表6 固沙灌木沙拐枣的冠幅预测模型
Table 6 Prediction model of crown width of sand-fixing shrub Calligonum mongolicum
沙丘 类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
半固定沙丘 | M1 | -0.060 | 33.550 | 1.740 | 0.914 | 0.101 | 0.009 | 13.51 | <0.001 | ||
M2 | -0.093 | 61.640 | 2.185 | -6 652.000 | -5.849 | 0.937 | 0.086 | 0.007 | 15.63 | <0.001 | |
M4 | 0.012 | 446.500 | 21.760 | 0.904 | 0.107 | 0.014 | 24.51 | <0.001 | |||
M5 | 0.661 | 0.060 | 0.062 | 0.906 | 0.106 | 0.009 | 18.64 | <0.001 | |||
M7 | 0.344 | 5.638 | 319.400 | 16.400 | 0.928 | 0.092 | 0.009 | 13.04 | <0.001 | ||
M8 | -4.406 | 446.500 | 21.770 | 0.904 | 0.107 | 0.014 | 24.51 | <0.001 | |||
M12 | 0.158 | -27.890 | 1.363 | 0.905 | 0.107 | 0.016 | 24.75 | <0.001 | |||
流动沙丘 | M1 | -0.060 | 28.220 | 2.029 | 0.832 | 0.198 | 0.013 | 18.48 | <0.001 | ||
M2 | -0.102 | 50.730 | 2.700 | -3 261.000 | -7.165 | 0.893 | 0.158 | 0.010 | 23.20 | <0.001 | |
M5 | 0.723 | 0.065 | 0.070 | 0.824 | 0.202 | 0.014 | 37.35 | <0.001 | |||
M6 | 0.232 | 44.960 | 665.400 | 41.890 | 0.851 | 0.186 | 0.011 | 16.01 | <0.001 | ||
M7 | 0.281 | 6.239 | 334.000 | 21.940 | 0.847 | 0.189 | 0.011 | 15.54 | <0.001 |
沙丘类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
半固定沙丘 | M1 | -0.031 | 23.560 | 1.276 | 0.852 | 0.022 | 0.0014 | 5.15 | <0.001 | ||
M2 | -0.041 | 42.350 | 1.224 | -6 987.000 | 0.591 | 0.971 | 0.017 | 0.0012 | 4.48 | <0.001 | |
M3 | 123.500 | 1.316 | 69.690 | 2.380 | 0.907 | 0.030 | 0.0020 | 7.03 | <0.001 | ||
M4 | 0.005 | 691.700 | 37.460 | 0.951 | 0.022 | 0.0016 | 5.90 | <0.001 | |||
M5 | 0.348 | 0.030 | 0.022 | 0.956 | 0.021 | 0.0015 | 5.46 | <0.001 | |||
M6 | 0.113 | 42.940 | 1041.000 | 57.230 | 0.961 | 0.020 | 0.0014 | 4.71 | <0.001 | ||
M7 | 0.253 | 5.450 | 357.000 | 19.570 | 0.962 | 0.019 | 0.0013 | 4.59 | <0.001 | ||
M8 | -5.329 | 691.700 | 37.460 | 0.951 | 0.022 | 0.0016 | 5.89 | <0.001 | |||
M12 | 0.151 | -42.480 | 2.166 | 0.903 | 0.031 | 0.0013 | 4.58 | <0.001 | |||
流动沙丘 | M1 | -0.126 | 37.390 | 3.396 | 0.938 | 0.190 | 0.0172 | 17.95 | <0.001 | ||
M2 | -0.127 | 33.130 | 3.745 | 542.900 | -3.189 | 0.936 | 0.193 | 0.0164 | 25.06 | <0.001 | |
M3 | 1 132.000 | 1.726 | 13.430 | 1.638 | 0.903 | 0.239 | 0.0216 | 33.48 | <0.001 | ||
M4 | 0.024 | 252.500 | 20.040 | 0.949 | 0.173 | 0.0204 | 20.64 | <0.001 | |||
M6 | 0.468 | 49.280 | 422.600 | 36.010 | 0.965 | 0.143. | 0.0161 | 11.10 | <0.001 | ||
M7 | 0.880 | 5.689 | 158.100 | 13.390 | 0.965 | 0.143 | 0.0160 | 11.00 | <0.001 | ||
M8 | -3.731 | 252.500 | 20.040 | 0.949 | 0.173 | 0.0204 | 20.65 | <0.001 | |||
M12 | 0.121 | -11.050 | 0.951 | 0.952 | 0.167 | 0.0212 | 14.99 | <0.001 |
表7 固沙灌木蛇麻黄的冠幅预测模型
Table 7 Prediction model of crown width of sand-fixing shrub Ephedra distachya
沙丘类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
半固定沙丘 | M1 | -0.031 | 23.560 | 1.276 | 0.852 | 0.022 | 0.0014 | 5.15 | <0.001 | ||
M2 | -0.041 | 42.350 | 1.224 | -6 987.000 | 0.591 | 0.971 | 0.017 | 0.0012 | 4.48 | <0.001 | |
M3 | 123.500 | 1.316 | 69.690 | 2.380 | 0.907 | 0.030 | 0.0020 | 7.03 | <0.001 | ||
M4 | 0.005 | 691.700 | 37.460 | 0.951 | 0.022 | 0.0016 | 5.90 | <0.001 | |||
M5 | 0.348 | 0.030 | 0.022 | 0.956 | 0.021 | 0.0015 | 5.46 | <0.001 | |||
M6 | 0.113 | 42.940 | 1041.000 | 57.230 | 0.961 | 0.020 | 0.0014 | 4.71 | <0.001 | ||
M7 | 0.253 | 5.450 | 357.000 | 19.570 | 0.962 | 0.019 | 0.0013 | 4.59 | <0.001 | ||
M8 | -5.329 | 691.700 | 37.460 | 0.951 | 0.022 | 0.0016 | 5.89 | <0.001 | |||
M12 | 0.151 | -42.480 | 2.166 | 0.903 | 0.031 | 0.0013 | 4.58 | <0.001 | |||
流动沙丘 | M1 | -0.126 | 37.390 | 3.396 | 0.938 | 0.190 | 0.0172 | 17.95 | <0.001 | ||
M2 | -0.127 | 33.130 | 3.745 | 542.900 | -3.189 | 0.936 | 0.193 | 0.0164 | 25.06 | <0.001 | |
M3 | 1 132.000 | 1.726 | 13.430 | 1.638 | 0.903 | 0.239 | 0.0216 | 33.48 | <0.001 | ||
M4 | 0.024 | 252.500 | 20.040 | 0.949 | 0.173 | 0.0204 | 20.64 | <0.001 | |||
M6 | 0.468 | 49.280 | 422.600 | 36.010 | 0.965 | 0.143. | 0.0161 | 11.10 | <0.001 | ||
M7 | 0.880 | 5.689 | 158.100 | 13.390 | 0.965 | 0.143 | 0.0160 | 11.00 | <0.001 | ||
M8 | -3.731 | 252.500 | 20.040 | 0.949 | 0.173 | 0.0204 | 20.65 | <0.001 | |||
M12 | 0.121 | -11.050 | 0.951 | 0.952 | 0.167 | 0.0212 | 14.99 | <0.001 |
沙丘类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
半固定沙丘 | M1 | -0.027 | 26.930 | 1.105 | 0.931 | 0.082 | 0.0059 | 48.75 | <0.001 | ||
M2 | -0.031 | 38.140 | 0.848 | -3 818.000 | 3.386 | 0.936 | 0.079 | 0.0058 | 52.44 | <0.001 | |
M4 | 0.006 | 657.400 | 26.190 | 0.923 | 0.087 | 0.0072 | 73.71 | <0.001 | |||
M6 | -198.100 | -3.110 | 658.900 | 26.170 | 0.922 | 0.087 | 0.0039 | 27.75 | <0.001 | ||
M7 | 0.251 | 6.083 | 456.200 | 17.500 | 0.962 | 0.061 | 0.0037 | 21.08 | <0.001 | ||
M8 | -5.054 | 657.200 | 26.180 | 0.923 | 0.087 | 0.0072 | 73.68 | <0.001 | |||
M12 | 0.174 | -36.430 | 1.552 | 0.933 | 0.081 | 0.0077 | 75.89 | <0.001 | |||
流动沙丘 | M1 | -0.025 | 18.080 | 1.328 | 0.873 | 0.101 | 0.0072 | 20.69 | <0.001 | ||
M2 | -0.046 | 42.410 | 1.471 | -5 710.000 | -2.100 | 0.916 | 0.082 | 0.0065 | 29.66 | <0.001 | |
M6 | 0.136 | 33.280 | 711.700 | 50.990 | 0.872 | 0.101 | 0.0070 | 17.78 | <0.001 | ||
M7 | 0.196 | 5.013 | 315.500 | 22.630 | 0.878 | 0.099 | 0.0068 | 16.66 | <0.001 | ||
M12 | 0.122 | -18.180 | 1.901 | 0.862 | 0.105 | 0.0152 | 57.28 | <0.001 |
表8 固沙灌木油蒿的冠幅预测模型
Table 8 Prediction model of crown width of sand-fixing shrub Artemisia ordosica
沙丘类型 | 模型 | 参 数 | 评价指标 | 模型检验 P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | R2 | RMSE | MAE | MAPE/% | |||
半固定沙丘 | M1 | -0.027 | 26.930 | 1.105 | 0.931 | 0.082 | 0.0059 | 48.75 | <0.001 | ||
M2 | -0.031 | 38.140 | 0.848 | -3 818.000 | 3.386 | 0.936 | 0.079 | 0.0058 | 52.44 | <0.001 | |
M4 | 0.006 | 657.400 | 26.190 | 0.923 | 0.087 | 0.0072 | 73.71 | <0.001 | |||
M6 | -198.100 | -3.110 | 658.900 | 26.170 | 0.922 | 0.087 | 0.0039 | 27.75 | <0.001 | ||
M7 | 0.251 | 6.083 | 456.200 | 17.500 | 0.962 | 0.061 | 0.0037 | 21.08 | <0.001 | ||
M8 | -5.054 | 657.200 | 26.180 | 0.923 | 0.087 | 0.0072 | 73.68 | <0.001 | |||
M12 | 0.174 | -36.430 | 1.552 | 0.933 | 0.081 | 0.0077 | 75.89 | <0.001 | |||
流动沙丘 | M1 | -0.025 | 18.080 | 1.328 | 0.873 | 0.101 | 0.0072 | 20.69 | <0.001 | ||
M2 | -0.046 | 42.410 | 1.471 | -5 710.000 | -2.100 | 0.916 | 0.082 | 0.0065 | 29.66 | <0.001 | |
M6 | 0.136 | 33.280 | 711.700 | 50.990 | 0.872 | 0.101 | 0.0070 | 17.78 | <0.001 | ||
M7 | 0.196 | 5.013 | 315.500 | 22.630 | 0.878 | 0.099 | 0.0068 | 16.66 | <0.001 | ||
M12 | 0.122 | -18.180 | 1.901 | 0.862 | 0.105 | 0.0152 | 57.28 | <0.001 |
机器学习算法类型 | 沙丘类型 | R2 | RMSE | MAE | MAPE/% |
---|---|---|---|---|---|
BP神经网络 | 固定沙丘 | 0.9040 | 0.0408 | 0.1255 | 29.17 |
半固定沙丘 | 0.9190 | 0.1474 | 0.1149 | 52.78 | |
流动沙丘 | 0.9100 | 0.0530 | 0.1355 | 29.57 | |
SVM支持向量机 | 固定沙丘 | 0.9997 | 0.0052 | 0.6694 | 1.69 |
半固定沙丘 | 0.9997 | 0.0074 | 0.9428 | 2.87 | |
流动沙丘 | 0.9997 | 0.0081 | 1.0892 | 2.64 |
表9 3种沙丘上固沙灌木冠幅预测的机器学习模型拟合结果
Table 9 The results of machine learning of crown width prediction for main sand-fixing shrubs on three types of sand dunes
机器学习算法类型 | 沙丘类型 | R2 | RMSE | MAE | MAPE/% |
---|---|---|---|---|---|
BP神经网络 | 固定沙丘 | 0.9040 | 0.0408 | 0.1255 | 29.17 |
半固定沙丘 | 0.9190 | 0.1474 | 0.1149 | 52.78 | |
流动沙丘 | 0.9100 | 0.0530 | 0.1355 | 29.57 | |
SVM支持向量机 | 固定沙丘 | 0.9997 | 0.0052 | 0.6694 | 1.69 |
半固定沙丘 | 0.9997 | 0.0074 | 0.9428 | 2.87 | |
流动沙丘 | 0.9997 | 0.0081 | 1.0892 | 2.64 |
图1 3种沙丘上主要固沙灌木的机器学习模型的冗余主轴(虚线)回归结果
Fig.1 The results of the reduced major axis of machine learning for main sand-fixing shrubs on three types of sand dunes
固沙灌木 | 沙丘类型 | R2 | RMSE | MAE | MAPE/% |
---|---|---|---|---|---|
白梭梭 | 固定沙丘 | 0.9045 | 0.0720 | 0.1558 | 30.44 |
半固定沙丘 | 0.9525 | 0.2316 | 0.1682 | 26.10 | |
流动沙丘 | 0.9770 | 0.0349 | 0.0871 | 51.10 | |
梭梭 | 固定沙丘 | 0.9018 | 0.1327 | 0.1289 | 34.56 |
沙拐枣 | 半固定沙丘 | 0.9995 | 0.5153 | 1.1836 | 2.92 |
流动沙丘 | 0.9943 | 0.9350 | 3.6987 | 6.56 | |
蛇麻黄 | 半固定沙丘 | 0.9992 | 0.2251 | 0.3356 | 1.21 |
流动沙丘 | 0.9379 | 0.3153 | 0.3177 | 22.78 | |
油蒿 | 半固定沙丘 | 0.9977 | 0.3750 | 0.9080 | 2.75 |
流动沙丘 | 0.9537 | 0.2177 | 0.0905 | 22.41 |
表10 不同固沙灌木的BP神经网络模型结果
Table 10 BP neural network model results of different sand-fixing shrubs
固沙灌木 | 沙丘类型 | R2 | RMSE | MAE | MAPE/% |
---|---|---|---|---|---|
白梭梭 | 固定沙丘 | 0.9045 | 0.0720 | 0.1558 | 30.44 |
半固定沙丘 | 0.9525 | 0.2316 | 0.1682 | 26.10 | |
流动沙丘 | 0.9770 | 0.0349 | 0.0871 | 51.10 | |
梭梭 | 固定沙丘 | 0.9018 | 0.1327 | 0.1289 | 34.56 |
沙拐枣 | 半固定沙丘 | 0.9995 | 0.5153 | 1.1836 | 2.92 |
流动沙丘 | 0.9943 | 0.9350 | 3.6987 | 6.56 | |
蛇麻黄 | 半固定沙丘 | 0.9992 | 0.2251 | 0.3356 | 1.21 |
流动沙丘 | 0.9379 | 0.3153 | 0.3177 | 22.78 | |
油蒿 | 半固定沙丘 | 0.9977 | 0.3750 | 0.9080 | 2.75 |
流动沙丘 | 0.9537 | 0.2177 | 0.0905 | 22.41 |
固沙灌木 | 沙丘类型 | R2 | RMSE | MAE | MAPE/% |
---|---|---|---|---|---|
白梭梭 | 固定沙丘 | 0.9998 | 0.0054 | 0.0085 | 1.23 |
半固定沙丘 | 0.9990 | 0.0167 | 1.4147 | 3.52 | |
流动沙丘 | 0.9999 | 0.0081 | 0.8021 | 4.22 | |
梭梭 | 固定沙丘 | 0.9998 | 0.0052 | 0.0086 | 2.76 |
沙拐枣 | 半固定沙丘 | 0.9998 | 0.0068 | 0.5695 | 1.03 |
流动沙丘 | 0.9998 | 0.0071 | 0.7826 | 1.57 | |
蛇麻黄 | 半固定沙丘 | 0.9998 | 0.0061 | 0.1177 | 0.42 |
流动沙丘 | 0.9997 | 0.0073 | 0.8457 | 0.42 | |
油蒿 | 半固定沙丘 | 0.9862 | 0.0595 | 0.9805 | 2.92 |
流动沙丘 | 0.9960 | 0.0317 | 0.5290 | 1.46 |
表11 不同固沙灌木冠幅预测的支持向量机模型
Table 11 SVM model for prediction of crown width of different sand-fixing shrubs
固沙灌木 | 沙丘类型 | R2 | RMSE | MAE | MAPE/% |
---|---|---|---|---|---|
白梭梭 | 固定沙丘 | 0.9998 | 0.0054 | 0.0085 | 1.23 |
半固定沙丘 | 0.9990 | 0.0167 | 1.4147 | 3.52 | |
流动沙丘 | 0.9999 | 0.0081 | 0.8021 | 4.22 | |
梭梭 | 固定沙丘 | 0.9998 | 0.0052 | 0.0086 | 2.76 |
沙拐枣 | 半固定沙丘 | 0.9998 | 0.0068 | 0.5695 | 1.03 |
流动沙丘 | 0.9998 | 0.0071 | 0.7826 | 1.57 | |
蛇麻黄 | 半固定沙丘 | 0.9998 | 0.0061 | 0.1177 | 0.42 |
流动沙丘 | 0.9997 | 0.0073 | 0.8457 | 0.42 | |
油蒿 | 半固定沙丘 | 0.9862 | 0.0595 | 0.9805 | 2.92 |
流动沙丘 | 0.9960 | 0.0317 | 0.5290 | 1.46 |
1 | Yang Y, Huang S.Allometric modelling of crown width for white spruce by fixed-and mixed-effects models[J].The Forestry Chronicle,2017,93(2):138-147. |
2 | 符利勇,孙华.基于混合效应模型的杉木单木冠幅预测模型[J].林业科学,2013,49(8):65-74. |
3 | 刘江,徐先英,丁爱强,等.荒漠灌木侧影面积的数字化测定及应用[J].干旱区研究,2017,34(5):1070-1076. |
4 | 赵维俊,刘贤德,金铭,等.祁连山青海云杉林群落结构特征分析[J].干旱区研究,2012,29(4):615-620. |
5 | 张冬燕,王冬至,范冬冬,等.不同立地类型华北落叶松人工林冠幅与胸径关系研究[J].林业资源管理,2019(4):69-73. |
6 | Lei Y, Fu L, Affleck D L,et al.Additivity of nonlinear tree crown width models:aggregated and disaggregated model structures using nonlinear simultaneous equations[J].Forest Ecology and Management,2018,427:372-382. |
7 | Hao X, Yu J S, Xin J W,et al.Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province,southeast China[J].PloS One,2015,10(4):e0122257. |
8 | 吕乐,董利虎,李凤日.黑龙江省东部地区天然椴树单木冠幅预测模型[J].东北林业大学学报,2019(7):37-42. |
9 | 韩艳刚,雷泽勇,赵国军,等.樟子松人工固沙林冠幅-胸径模型[J].干旱区研究,2018,35(5):1129-1137. |
10 | Fu L, Sharma R P, Hao K,et al.A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J].Forest Ecology and Management,2017,389:364-373. |
11 | Sharma R P, Vacek Z, Vacek S.Individual tree crown width models for Norway spruce and European beech in Czech Republic[J].Forest Ecology and Management,2016,366:208-220. |
12 | Marshall D D, Johnson G P, Hann D W.Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J].Canadian Journal of Forest Research,2003,33(11):2059-2066. |
13 | Tahvanainen T, Forss E.Individual tree models for the crown biomass distribution of Scots pine,Norway spruce and birch in Finland[J].Forest Ecology and Management,2008,255(3/4):455-467. |
14 | Monserud R A, Sterba H.A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria[J].Forest Ecology and Management,1996,80(1):57-80. |
15 | Jiang L C, Liu R L.Segmented taper equations with crown ratio and stand density for Dahurian Larch (Larix gmelinii) in Northeastern China[J].Journal of Forestry Research,2011,22(3):347-352. |
16 | Carvalho J P, Parresol B R.Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)[J].Forest Ecology and Management,2003,179(1):269-276. |
17 | 张雷,王琳琳,张旭东,等.随机森林算法基本思想及其在生态学中的应用:以云南松分布模拟为例[J].生态学报,2014,34(3):650-659. |
18 | 张润,王永滨.机器学习及其算法和发展研究[J].中国传媒大学学报(自然科学版),2016,23(2):10-18. |
19 | 潘晓玲.新疆种子植物属的区系地理成分分析[J].植物研究,1999,19(3):249-258. |
20 | 郭庆华,金时超,李敏,等.深度学习在生态资源研究领域的应用:理论,方法和挑战[J].中国科学:地球科学,2020,50(10):1354-1373. |
21 | 周志翔,徐永荣,王鹏程,等.不同密度湿地松纸浆原料试验林早期冠幅生长模型研究[J].华中农业大学学报,1998,17(3):289-293. |
22 | Gill S J, Biging G S, Murphy E C.Modeling conifer tree crown radius and estimating canopy cover[J].Forest Ecology and Management,2000,126:405-416. |
23 | 詹瑾,李玉霖,韩丹,等.半干旱沙区3种优势固沙灌木生物量分配及其生态学意义[J].中国沙漠,2020,40(5):149-157. |
24 | Yi B Q, Zhao N W, Li Y Z,et al.Impact of habitat heterogeneity on plant community pattern in Gurbantunggut Desert[J].Journal of Geographical Sciences,2004,14(4):447-455. |
25 | Chen Y, Zhang L, Shi X,et al.Life history responses of spring-and autumn-germinated ephemeral plants to increased nitrogen and precipitation in the Gurbantunggut Desert[J].Science of the Total Environment,2019,659:756-763. |
26 | 张立运,陈昌笃.论古尔班通古特沙漠植物多样性的一般特点[J].生态学报,2002,22(11):1923-1932. |
27 | Ibrahim E M, Osman E H.Diameter at breast height-crown width prediction models for Anogeissus leiocarpus (DC.) Guill & Perr and Combretum hartmannianum Schweinf[J].Journal of Forest Products & Industries,2014,4(3):215-219. |
28 | Raptis D, Kazana V, Kazaklis A,et al.A crown width-diameter model for natural even-aged black pine forest management[J].Forests,2018,9(10):610. |
29 | 潘文婵,刘尚东.BP神经网络的优化研究与应用[J].计算机技术与发展,2019,29(5):74-76. |
30 | Bohonak A J. RMA:Software for Reduced Major Axis regression v.1.17[Z].2004. |
[1] | 聂敏, 刘志辉, 刘洋, 姚俊强. 基于PCA和BP神经网络的径流预测[J]. 中国沙漠, 2016, 36(4): 1144-1152. |
[2] | 刘洪兰, 张强, 张俊国, 王海波, 闻小艳. BP神经网络模型在伏旱预测中的应用——以河西走廊为例[J]. 中国沙漠, 2015, 35(2): 474-478. |
[3] | 王静静, 张文鹏, 徐当会. NaCl胁迫下钙对沙拐枣(Calligonum arborescens)株高及光合特性的影响[J]. 中国沙漠, 2015, 35(1): 167-174. |
[4] | 谢姆斯叶·艾尼瓦尔, 塔西甫拉提·特依拜, 王宏卫, 买买提·沙吾提, 张飞. 人工智能计算技术在新疆干旱区典型绿洲土壤盐分预测中的应用[J]. 中国沙漠, 2014, 34(1): 153-161. |
[5] | 吉雪花1,2, 张元明2, 陶 冶2, 周小兵2, 张 静2. 藓类结皮斑块面积与环境因子的关系[J]. 中国沙漠, 2013, 33(6): 1803-1809. |
[6] | 左合君;勾芒芒;李钢铁;李 兴. BP网络模型在沙尘暴预测中的应用研究[J]. 中国沙漠, 2010, 30(1): 193-197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn