1 |
Koppa A, Keune J, Schumacher D L,et al.Dryland self-expansion enabled by land-atmosphere feedbacks[J].Science,2024,385(6712):967-972.
|
2 |
Berdugo M, Delgado-Baquerizo M, Soliveres S,et al.Global ecosystem thresholds driven by aridity[J].Science,2020,367(6479):787-790.
|
3 |
张志山,赵洋,张亚峰,等.中国北方沙区水量平衡自动模拟监测系统(沙坡头蒸渗仪群)[J].中国科学院院刊,2021,36(6):733-743.
|
4 |
Carminati A, Javaux M.Soil rather than xylem vulnerability controls stomatal response to drought[J].Trends in Plant Science,2020,25(9):868-880.
|
5 |
Anderegg W R L.Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation[J].New Phytologist,2015,205(3):1008-1014.
|
6 |
Kannenbery S A, Novick K A, Phillips R P.Anisohydric behavior linked to persistent hydraulic damage and delayed drought recovery across seven North American tree species[J].New Phytologist,2019,222(4):1862-1872.
|
7 |
Tyree M T, Zimmermann M H.Xylem Structure and the Ascent of Sap[M].Berlin,Germany: Springer,2002.
|
8 |
Yang D M, Zhang Y S, Zhou D,et al.The hydraulic architecture of an arborescent monocot:ontogeny-related adjustments in vessel size and leaf area compensate for increased resistance[J].New Phytologist,2021,231(1):273-284.
|
9 |
Pivovaroff A L, Sack L, Santiago L S.Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis[J].New Phytologist,2014,203(3):842-850.
|
10 |
Nolf M, Lopez R, Peters J M R,et al.Visualization of xylem embolism by X-ray microtomography: a direct test against hydraulic measurements[J].New Phytologist,2017,214(2):890-898.
|
11 |
Rodríguez-Calcerrada J, Li M, López R,et al.Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species[J].New Phytologist,2017,213(2):597-610.
|
12 |
McDowell N, Pockman W T, Allen C D,et al.Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought[J].New Phytologist,2008,178(4):719-739.
|
13 |
He P C, Gleason S M, Wright I J,et al.Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity[J].Global Change Biology,2020,26(3):1833-1841.
|
14 |
Chen J Z, Wu Z L, Zhao T M,et al.Rotation crop root performance and its effect on soil hydraulic properties in a clayey Utisol[J].Soil & Tillage Research,2021,213:1-11.
|
15 |
van Wijk M T.Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate,soil type and plant biomass[J].Global Ecology and Biogeography,2011,20(2):331-342.
|
16 |
Wang X P, Berndtsson R, Pan Y X,et al.Spatiotemporal variation of soil water potential and its significance to water balance for a desert shrub area[J].Soil & Tillage Research,2022,224:1-9.
|
17 |
武小飞.水分胁迫对土壤-刺槐系统水力特性的影响[D].陕西杨凌:西北农林科技大学,2021.
|
18 |
McDowell N G, Allen C D.Darcy's law predicts widespread forest mortality under climate warming[J].Nature Climate Change,2015,5(7): 669-672.
|
19 |
Xu H Y, Wang H, Prentice I C,et al.Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements[J].New Phytologist,2021,232(3): 1286-1296.
|
20 |
Tyree M T, Ewers F W.The hydraulic architecture of trees and other woody plants[J].New Phytologist,1991,119(3): 345-360.
|
21 |
韩璐.白杨杂交子代栓塞脆弱性分割及与生长的关系[D].陕西杨凌: 西北农林科技大学,2022.
|
22 |
Wolfe B T, Sperry J S, Kursar T A.Does leaf shedding protect stems from cavitation during seasonal droughts?a test of the hydraulic fuse hypothesis[J].New Phytologist,2016,212(4):1007-1018.
|
23 |
李强.暖温带常见落叶木本植物水分利用策略及干旱死亡机理研究[D].济南:山东大学,2020.
|
24 |
刘青.黄土高原刺槐解剖结构特征及其抗旱生理机制[D].陕西杨凌:西北农林科技大学,2024.
|
25 |
Buckley T N.How do stomata respond to water status[J].New Phytologist,2019,224(1):21-36.
|
26 |
聂争飞.干旱胁迫下植物叶水分传导速率与木质部栓塞关系的研究[D].兰州:兰州大学,2019.
|
27 |
Urli M, Porté A J, Cochard H,et al.Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees[J].Tree Physiology,2013,33(7):672-683.
|
28 |
Levionnois S, Jansen S, Wandji R T,et al.Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees[J].New Phytologist,2021,229(3):1453-1466.
|
29 |
Mantova M, Herbette S, Cochard H,et al.Hydraulic failure and tree mortality: from correlation to causation[J].Trends in Plant Science,2022,27(4):335-345.
|
30 |
Brum M, Vadeboncoeur M A, Ivanov V,et al.Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest[J].Journal of Ecology,2019,107(1):318-333.
|
31 |
Cai G C, Tötzke C, Kaestner A,et al.Quantification of root water uptake and redistribution using neutron imaging: a review and future directions[J].Plant Journal,2022,111(2):348-359.
|
32 |
鱼腾飞,冯起,司建华,等.植物根系水力再分配测定与模拟方法研究进展与展望[J].生态学杂志,2015,34(10):2930-2936.
|
33 |
Daly K R, Tracy S R, Crout N M J,et al.Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling[J].Plant,Cell & Environment,2018,41(1):121-133.
|
34 |
Walker T S, Bais H P, Grotewold E,et al.Root exudation and rhizosphere biology[J].Plant Physiology,2003,132(1):44-51.
|
35 |
Dara A, Moradi B A, Vontobel P,et al.Mapping compensating root water uptake in heterogeneous soil conditions via neutron radiography[J].Plant and Soil,2015,397(1/2):273-287.
|
36 |
Carminati A.A Model of root water uptake coupled with rhizosphere dynamics[J].Vadose Zone Journal,2012,11(3):1-9.
|
37 |
Moradi A B, Carminati A, Vetterlein D,et al.Three-dimensional visualization and quantification of water content in the rhizosphere[J].New Phytologist,2011,192(3):653-663.
|
38 |
林芙蓉,顾大形,黄玉清,等.植物根系水力再分配的研究进展[J].生态学杂志,2021,40(9):2978-2986.
|
39 |
Carminati A, Ahmed M A, Zarebanadkouki M,et al.Stomatal closure prevents the drop in soil water potential around roots[J].New Phytologist,2020,226(6):1541-1543.
|
40 |
刘萌萌.植物木质部管道结构和水力特性的关系[D].陕西杨凌:西北农林科技大学,2017.
|
41 |
蒋欣.红树植物木质部水力结构与功能研究[D].南宁:广西大学,2021.
|
42 |
Schuldt B, Knutzen F, Delzon S,et al.How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction[J].New Phytologist,2016,210(2):443-458.
|
43 |
陈玉.杉木幼苗水力性状特征及其对干旱的响应机制[D].长沙:中南林业科技大学,2023.
|
44 |
Huo J Q, Li C Y, Zhao Y,et al.Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats[J].Plant Physiology,2024,196(4):2450-2462.
|
45 |
刘存海.黄土丘陵区典型落叶树种的水力学特性研究[D].陕西杨凌: 中国科学院研究生院(教育部水土保持与生态环境研究中心),2014.
|
46 |
刘晓燕.树木水力结构模型与耐旱机理研究[D].北京:北京林业大学,2003.
|
47 |
Sack L, Holbrook N M.Leaf hydraulics[J].Annual Review of Plant Biology,2006,57:361-381.
|
48 |
罗丹丹,王传宽,金鹰.木本植物水力系统对干旱胁迫的响应机制[J].植物生态学报,2021,45(9):925-941.
|
49 |
Guo J S, Ogle K.Antecedent soil water content and vapor pressure deficit interactively control water potential in Larrea tridentata [J].New Phytologist,2019,221(1):218-232.
|
50 |
马煦.不同土壤水分条件下毛白杨不同高度冠层的水分调节特征与机制[D].北京:北京林业大学,2020.
|
51 |
Martínez-Vilalta J, Poyatos R, Aguadé D,et al.A new look at water transport regulation in plants[J].New Phytologist,2014,204(1):105-115.
|
52 |
陈嘉嘉.干旱和遮荫对典型固沙灌木生存的影响[D].北京:中国科学院大学,2023.
|
53 |
Zhang H X, McDowell N G, Li X R,et al.,Hydraulic safety and growth rather than climate of origin influence survival in desert shrubs and trees[J].Forest Ecology and Management,2023,543:1-13.
|
54 |
黄恺翔.鸡公山地区不同材性树种枝木质部水力与解剖结构的关系[D].杭州:浙江农林大学,2022.
|
55 |
Manzoni S, Vico G, Katul G,et al.Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off[J].New Phytologist,2013,198(1):169-178.
|
56 |
陈颖.中国干旱区草本和灌木根部导管特征及随环境变化[D].哈尔滨:东北林业大学,2023.
|
57 |
郭梦瑶.基于植物水力学的中国森林蒸腾模拟研究[D].武汉:武汉大学,2022.
|
58 |
Feddes R, Kowalik P, Zaradny H.Simulation of Field Water Use and Crop Yield[M].Wageningen,The Netherlands: Pudoc,1978.
|
59 |
Wang X F, Li Y, Chau H W,et al.,Reduced root water uptake of summer maize grown in water-repellent soils simulated by HYDRUS-1D[J].Soil & Tillage Research,2021,209:1-13
|
60 |
Tu A G, Xie S H, Mo M H,et al.,Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model[J].Agricultural Water Management,2021,243:1-9.
|
61 |
岩晓莹.黄土高原刺槐生长及水分传输关键过程对气候变化的响应[D].陕西杨凌:西北农林科技大学,2024.
|
62 |
张中典.黄土高原降水梯度带刺槐SPAC系统水分传输对干旱环境的适应性[D].陕西杨凌:西北农林科技大学,2020.
|