中国沙漠 ›› 2025, Vol. 45 ›› Issue (3): 121-130.DOI: 10.7522/j.issn.1000-694X.2025.00147
马亚丽(), 马莉, 杨丽萍, 王思晴, 赵长明, 陈宁(
)
收稿日期:
2025-03-16
修回日期:
2025-05-03
出版日期:
2025-05-20
发布日期:
2025-06-30
通讯作者:
陈宁
作者简介:
马亚丽(1999—),女,甘肃天水人,硕士研究生,研究方向为旱区生物土壤结皮-维管植物的共存模式。E-mail: 220220932300@lzu.edu.cn
基金资助:
Yali Ma(), Li Ma, Liping Yang, Siqing Wang, Changming Zhao, Ning Chen(
)
Received:
2025-03-16
Revised:
2025-05-03
Online:
2025-05-20
Published:
2025-06-30
Contact:
Ning Chen
摘要:
维管植物在旱区生态系统占据主导地位而被广泛关注,旱区生态系统的另一独特生物组分——生物土壤结皮,提供了一系列生态功能与服务,但受到的关注较少。以往的研究常单独探讨维管植物或生物土壤结皮在旱区生态系统中的作用与影响,忽视了二者共存问题,对其共存机制的研究更匮乏。鉴于水分是旱区生态系统的关键限制因素,研究生态水文过程影响生物土壤结皮与维管植物的共存具有重要意义。本文首先综述了旱区生态系统中生物土壤结皮与维管植物的共存模式,接着探讨了主要生态水文过程(降水、径流、入渗等)对共存模式的影响,最终阐明了共存模式的生态水文机制,为旱区植被恢复与荒漠化防治提供了理论支撑。
中图分类号:
马亚丽, 马莉, 杨丽萍, 王思晴, 赵长明, 陈宁. 生态水文视角下的旱区生物土壤结皮-维管植物共存模式[J]. 中国沙漠, 2025, 45(3): 121-130.
Yali Ma, Li Ma, Liping Yang, Siqing Wang, Changming Zhao, Ning Chen. Coexistence patterns of biocrusts and vascular plants in drylands from the perspective of ecohydrology[J]. Journal of Desert Research, 2025, 45(3): 121-130.
图1 利用Citespace共现分析旱区生物土壤结皮-维管植物共存的生态水文机制研究的作者(A)、国家(B)、关键词(C)(1993—2023年)
Fig.1 Authors (A),countries (B),and keywords (C) of studying the ecohydrological mechanisms of biocrust-vascular plant coexistence in drylands using Citespace co-occurrence analysis (1993-2023)
图3 旱区生态系统生态水文过程驱动下的生物土壤结皮-维管植物共存示意图
Fig.3 Illustration of biocrust-vascular plant coexistence under the effects of ecohydrological processes in dryland ecosystems
1 | Schimel D S.Drylands in the earth system[J].Science,2010,327(5964):418-419. |
2 | Prăvălie R.Drylands extent and environmental issues:a global approach[J].Earth-Science Reviews,2016,161:259-278. |
3 | UNEMG.Global drylands:A UN System-wide Response[Z].Nairobi,Kenya:UNEMG,2011. |
4 | Huang J P, Yu H P, Guan X D,et al.Accelerated dryland expansion under climate change[J].Nature Climate Change,2016,6(2):166-171. |
5 | Collins S L, Belnap J, Grimm N B,et al.A multiscale,hierarchical model of pulse dynamics in arid-land ecosystems[J].Annual Review of Ecology,Evolution,and Systematics,2014,45:397-419. |
6 | 陈亚宁,李忠勤,徐建华,等.中国西北干旱区水资源与生态环境变化及保护建议[J].中国科学院院刊,2023,38(3):385-393. |
7 | Weber B, Belnap J, Büdel B.Biological Soil Crusts:An Organizing Principle in Drylands[M].Berlin,Germany:Springer,2016. |
8 | Weber B, Bülnap J,Büdel,et al.What is a biocrust?A refined,contemporary definition for a broadening research community[J].Biological Reviews,2022,97(5):1768-1785. |
9 | Belnap J, Lange O L.Biological Soil Crusts:Structure,Function,and Management[M].Berlin,Germany:Springer,2003. |
10 | Rodriguez-Caballero E, Belnap J, Büdel B,et al.Dryland photoautotrophic soil surface communities endangered by global change[J].Nature Geoscience,2018,11(3):185-191. |
11 | Su Y G, Wu L, Zhou Z B,et al.Carbon flux in deserts depends on soil cover type:a case study in the Gurbantunggute Desert,North China[J].Soil Biology & Biochemistry,2013,58:332-340. |
12 | Belnap J, Büdel B.Biological soil crusts as soil stabilizers[M]//Weber B,Belnap J,Büdel B.Biological Soil Crusts:an Organizing Principle in Drylands.Berlin,Germany:Springer,2016. |
13 | Chamizo S, Belnap J, Eldridge D J,et al.The role of biocrusts in arid land hydrology[M]//Weber B,Belnap J,Büdel B.Biological Soil Crusts:an Organizing Principle in Drylands.Berlin,Germany:Springer,2016:321-346. |
14 | Elbert W, Weber B, Burrows S,et al.Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J].Nature Geoscience,2012,5(7):459-462. |
15 | Maestre F T, Bowker M A, Eldridge D J,et al.Biological soil crusts as a model system in ecology[M]//Weber B,Belnap J,Büdel B.Biological Soil Crusts:an Organizing Principle in Drylands.Berlin,Germany:Springer,2016:405-424. |
16 | Barger N N, Weber B, Garcia-Pichel F,et al.Patterns and controls on nitrogen cycling of biological soil crusts[M]//Weber B,Belnap J,Büdel B.Biological Soil Crusts:an Organizing Principle in Drylands.Berlin,Germany:Springer,2016:258-286. |
17 | Bowker M A, Belnap J, Miller M E.Spatial modeling of biological soil crusts to support rangeland assessment and monitoring[J].Rangeland Ecology & Management,2006,59(5):519-529. |
18 | Chen N, Yu K L, Jia R L,et al.Biocrust as one of multiple stable states in global drylands[J].Science Advances,2020,6(39):eaay3763. |
19 | Hawkes C V, Flechtner V R.Biological soil crusts in a xeric Florida shrubland:composition,abundance,and spatial heterogeneity of crusts with different disturbance histories[J].Microbial Ecology,2002,43(1):1-12. |
20 | Belnap J.The potential roles of biological soil crusts in dryland hydrologic cycles[J].Hydrological Processes,2006,20(15):3159-3178. |
21 | Zhang Y M, Aradottir A L, Serpe M,et al.Interactions of biological soil crusts with vascular plants[M]//Weber B,Belnap J,Büdel B.Biological Soil Crusts:an Organizing Principle in Drylands.Berlin Germany:Springer,2016:383-404. |
22 | Havrilla C A, Barger N N.Biocrusts and their disturbance mediate the recruitment of native and exotic grasses from a hot desert ecosystem[J].Ecosphere,2018,9(7):e02361. |
23 | Lan S B, Thomas A D, Tooth S,et al.Effects of vegetation on bacterial communities,carbon and nitrogen in dryland soil surfaces:implications for shrub encroachment in the southwest Kalahari[J].Science of the Total Environment,2021,764:142847. |
24 | West N E.Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J].Advances in Ecological Research,1990,20:179-223. |
25 | Eldridge D J.Cryptogams,vascular plants,and soil hydrological relations-some preliminary-results from the semiarid woodlands of Eastern Australia[J].Great Basin Naturalist,1993,53(1):48-58. |
26 | Gutierrez M, Pando-Moreno M, Jurado E,et al.Non-random distribution of biocrust in a natural arid environment in the Northern Mexican Plateau[J].Applied Ecology and Environmental Research,2018,16(3):2441-2451. |
27 | She W W, Chen N, Zhang Y Q,et al.Precipitation and nitrogen deposition alter biocrust-vascular plant coexistence in a desert ecosystem:threshold and mechanisms[J].Journal of Ecology,2022,110(4):772-783. |
28 | Eldridge D J, Zaady E, Shachak M.Microphytic crusts,shrub patches and water harvesting in the Negev Desert:the Shikim system[J].Landscape Ecology,2002,17(6):587-597. |
29 | Chamizo S, Rodriguez-Caballero E, Roman J R,et al.Effects of biocrust on soil erosion and organic carbon losses under natural rainfall[J].Catena,2017,148:117-125. |
30 | D'Odorico P, Bhattachan A.Hydrologic variability in dryland regions:impacts on ecosystem dynamics and food security[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2012,367(1606):3145-3157. |
31 | Kinast S, Meron E, Yizhaq H,et al.Biogenic crust dynamics on sand dunes[J].Physical Review E,2013,87(2):020701. |
32 | Yang X G, Wang E T, Qu W J,et al.Biocrust-induced partitioning of soil water between grass and shrub in a desert steppe of Northwest China[J].Journal of Arid Land,2023,15(1):63-76. |
33 | Jia R L, Chen N, Yu K L,et al.High rainfall frequency promotes the dominance of biocrust under low annual rainfall[J].Plant and Soil,2019,435(1/2):257-275. |
34 | Bowker M A, Maestre F T, Eldridge D,et al.Biological soil crusts (biocrusts) as a model system in community,landscape and ecosystem ecology[J].Biodiversity and Conservation,2014,23(7):1619-1637. |
35 | Sala O E, Parton W J, Joyce L A,et al.Primary production of the central grassland region of the united-states[J].Ecology,1988,69(1):40-45. |
36 | Reed S C, Coe K K, Sparks J P,et al.Changes to dryland rainfall result in rapid moss mortality and altered soil fertility[J].Nature Climate Change,2012,2(10):752-755. |
37 | Chen N, Wang X P, Zhang Y F,et al.Ecohydrological effects of biological soil crust on the vegetation dynamics of restoration in a dryland ecosystem[J].Journal of Hydrology,2018,563:1068-1077. |
38 | Maestre F T, Callaway R M, Valladares F,et al.Refining the stress-gradient hypothesis for competition and facilitation in plant communities[J].Journal of Ecology,2009,97(2):199-205. |
39 | Eldridge D J, Reed S, Travers S K,et al.The pervasive and multifaceted influence of biocrusts on water in the world's drylands[J].Global Change Biology,2020,26(10):6003-6014. |
40 | Chamizo S, Cantón Y, Rodríguez‐Caballero E,et al.Biocrusts positively affect the soil water balance in semiarid ecosystems[J].Ecohydrology,2016,9(7):1208-1221. |
41 | Loik M E, Breshears D D, Laurenroth W K,et al.Climatology and ecohydrology of precipitation pulses in arid and semiarid ecosystems of the western USA[J].Oecologia,2004,141:269-281. |
42 | Ludwig J A, Wilcox B P, Breshears D D,et al.Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes[J].Ecology,2005,86(2):288-297. |
43 | Newman B D, Wilcox B P, Archer S R,et al.Ecohydrology of water-limited environments:a scientific vision[J].Water Resources Research,2006,42(6):W06302. |
44 | Kidron G J, Aloni I.The contrasting effect of biocrusts on shallow-rooted perennial plants (hemicryptophytes):increasing mortality (through evaporation) or survival (through runoff)[J].Ecohydrology,2018,11(6):e1912. |
45 | Wang X P, Li X R, Xiao H L,et al.Effects of surface characteristics on infiltration patterns in an and shrub desert[J].Hydrological Processes,2007,21(1):72-79. |
46 | Xiao B, Hu K L.Moss-dominated biocrusts decrease soil moisture and result in the degradation of artificially planted shrubs under semiarid climate[J].Geoderma,2017,291:47-54. |
47 | 尹立河,王平,王田野,等.西北地区地下水依赖型植被生态水文过程研究进展与展望[J].西北地质,2025,58(2):16-30. |
48 | Wang L, D'Odorico P, Evans J P,et al.Dryland ecohydrology and climate change:critical issues and technical advances[J].Hydrology and Earth System Sciences,2012,16(8):2585-2603. |
49 | Mor-Mussery A, Stavi I, Sarig S,et al.The dynamic of the eco-hydrological interrelations between shrubs and biocrusts in the Negev shrublands:empiric assessments and perspectives for shrubland rehabilitation[J].Catena,2022,214:106296. |
50 | Li X J, Li X R, Song W M,et al.Effects of crust and shrub patches on runoff,sedimentation,and related nutrient (C,N) redistribution in the desertified steppe zone of the Tengger Desert,Northern China[J].Geomorphology,2008,96(1/2):221-232. |
51 | Read C F, Duncan D H, Vesk P A,et al.Biological soil crust distribution is related to patterns of fragmentation and landuse in a dryland agricultural landscape of southern Australia[J].Landscape Ecology,2008,23(9):1093-1105. |
52 | Li X R, Tian F, Jia R L,et al.Do biological soil crusts determine vegetation changes in sandy deserts?Implications for managing artificial vegetation[J].Hydrological Processes,2010,24(25):3621-3630. |
53 | Virtanen R, Eskelinen A, Harrison S.Comparing the responses of bryophytes and short-statured vascular plants to climate shifts and eutrophication[J].Functional Ecology,2017,31(4):946-954. |
54 | Chen N, Liu X D, Zheng K,et al.Ecohydrological effects of biocrust type on restoration dynamics in drylands[J].Science of the Total Environment,2019,687:527-534. |
55 | Whitney K M, Vivoni E R, Duniway M C,et al.Ecohydrological role of biological soil crusts across a gradient in levels of development[J].Ecohydrology,2017,10(7):e1875. |
56 | Wang Y, Li X Y, Wu X C,et al.Divergent effects of biological soil crusts on soil respiration between bare patches and shrub patches under simulated rainfall in a desert ecosystem in Northwest China[J].Soil & Tillage Research,2021,214:105185. |
57 | Bormann H, Klaassen K.Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils[J].Geoderma,2008,145(3/4):295-302. |
58 | 徐杰,白学良,杨持,等.固定沙丘结皮层藓类植物多样性及固沙作用研究[J].植物生态学报,2003(4):545-551. |
59 | Li X R, Ma F Y, Xiao H L,et al.Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China[J].Journal of Arid Environments,2004,57(1):1-16. |
60 | Ram A, Aaron Y.Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy and area[J].Catena,2007,70(3):437-442. |
61 | Yair A, Almog R, Veste M.Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area:Northern Negev Desert,Israel[J].Catena,2011,87(3):326-333. |
62 | Guan H J, Liu X Y.Does biocrust successional stage determine the degradation of vascular vegetation via alterations in its hydrological roles in semi-arid ecosystem?[J].Ecohydrology,2019,12(3):e2075. |
63 | Fearnehough W, Fullen M A, Mitchell D J,et al.Aeolian deposition and its effect on soil and vegetation changes on stabilised desert dunes in northern China[J].Geomorphology,1998,23(2/4):171-182. |
64 | Jia Y H, Shao M A.Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China[J].Journal of Hydrology,2014,519:523-531. |
65 | Xiao H L, Cheng G D, Li X R,et al.Ecohydrological change mechanism of a rainfed revegetation ecosystem at southeastern edge of Tengger Desert,Northwest China[J].Science in China Series D-Earth Sciences,2004,47:71-77. |
66 | Li X R, Zhang Z S, Tan H J,et al.Ecological restoration and recovery in the wind-blown sand hazard areas of northern China:relationship between soil water and carrying capacity for vegetation in the Tengger Desert[J].Science China-Life Sciences,2014,57(5):539-548. |
67 | Kidron G J.The dual effect of sand-covered biocrusts on annual plants:increasing cover but reducing individual plant biomass and fecundity[J].Catena,2019,182:104120. |
68 | Kinast S, Ashkenazy Y, Meron E.A coupled vegetation-crust model for patchy landscapes[J].Pure and Applied Geophysics,2016,173(3):983-993. |
69 | Belnap J, Welter J R, Grimm N B,et al.Linkages between microbial and hydrologic processes in arid and semiarid watersheds[J].Ecology,2005,86(2):298-307. |
70 | Fick S E, Barger N N, Duniway M C.Hydrological function of rapidly induced biocrusts[J].Ecohydrology,2019,12(4):e2089. |
71 | Gao L Q, Bowker M A, Sun H,et al.Linkages between biocrust development and water erosion and implications for erosion model implementation[J].Geoderma,2020,357:113973. |
72 | Kidron G J.Differential water distribution over dune slopes as affected by slope position and microbiotic crust,Negev Desert,Israel[J].Hydrological Processes,1999,13(11):1665-1682. |
73 | Rietkerk M, Boerlijst M C, van Langevelde F,et al.Self-organization of vegetation in arid ecosystems[J].American Naturalist,2002,160(4):524-530. |
74 | Fisher J B, Melton F, Middleton E,et al.The future of evapotranspiration:global requirements for ecosystem functioning,carbon and climate feedbacks,agricultural management,and water resources[J].Water Resources Research,2017,53(4):2618-2626. |
75 | Novak V.Evapotranspiration in the Soil-Plant-Atmosphere System[M].Berlin,Germany:Springer,2012. |
76 | Sun F H, Xiao B, Ghanbarian B.Increasing effect of biocrusts on evaporation is evidenced by simulating evaporation and diffusion experiments and water stable isotope analysis[J].Journal of Hydrology,2024,637:131427. |
77 | Berndtsson R, Nodomi K, Yasuda H,et al.Soil water and temperature patterns in an arid desert dune sand[J].Journal of Hydrology,1996,185(1/4):221-240. |
78 | Zhang Z S, Liu L C, Li X R,et al.Evaporation properties of a revegetated area of the Tengger Desert,North China[J].Journal of Arid Environments,2008,72(6):964-973. |
79 | Kidron G J.The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts[J].Journal of Hydrology,2014,508:128-136. |
80 | Qiu D X, Xiao B, Ghanbarian B.Biocrusts intensify grassland evapotranspiration through increasing evaporation and reducing transpiration in a semi-arid ecosystem[J].Journal of Hydrology,2024,639:131653. |
81 | Pan Y X, Wang X P, Zhang Y F,et al.Dew formation characteristics at annual and daily scale in xerophyte shrub plantations at southeast margin of Tengger Desert,Northern China[J].Ecohydrology,2018,11(5):e1968. |
82 | Kidron G J, Kronenfeld R.Dew and fog as possible evolutionary drivers?The expansion of crustose and fruticose lichens in the Negev is respectively mainly dictated by dew and fog[J].Planta,2022,255(2):32. |
83 | Pan Y X, Wang X P, Zhang Y F.Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area,Northern China[J].Journal of Hydrology,2010,387(3/4):265-272. |
84 | Zhang J, Zhang Y M, Downing A,et al.The influence of biological soil crusts on dew deposition in Gurbantunggut Desert,Northwestern China[J].Journal of Hydrology,2009,379(3/4):220-228. |
85 | Zhang Y M, Wu N, Zhang B C,et al.Species composition,distribution patterns andecological functions of biological soil crusts in the Gurbantunggut Desert[J].Journal of Arid Land,2010,2(3):180-189. |
86 | Wang S Q, Ma L, Yang L P,et al.Advancing studies on global biocrust distribution[J].Soil,2024,10(2):763-778. |
87 | Scheffer M, Carpenter S, Foley J A,et al.Catastrophic shifts in ecosystems[J].Nature,2001,413(6856):591-596. |
[1] | 南益聪, 霍建强, 韩高玲, 周元贞, 赵自强, 张志山. 干旱区植物水力传导与抗旱性研究进展[J]. 中国沙漠, 2025, 45(3): 113-120. |
[2] | 李佳, 贾晓红, 周德正, 吴波. 极端环境生物土壤结皮发育对碳循环的影响[J]. 中国沙漠, 2025, 45(3): 131-140. |
[3] | 赵丽娜, 谢燚谛, 贺子康, 柴梦洋, 高源婧坤, 吴影, 张杰, 古绍彬. 荒漠生物土壤结皮碳降解菌株的筛选鉴定及特性分析[J]. 中国沙漠, 2025, 45(3): 185-190. |
[4] | 赵逸雪, 赵洋, 连煜超, 赵燕翘, 许文文. 固沙灌木种类和密度对凋落物及生物土壤结皮的影响[J]. 中国沙漠, 2025, 45(3): 262-270. |
[5] | 赵洋, 连煜超, 赵燕翘, 许文文, 赵逸雪. 生物土壤结皮在防沙治沙中的应用综述[J]. 中国沙漠, 2025, 45(3): 31-38. |
[6] | 张静雯, 殷金悦, 霍佳琪, 程凤, 高娜, 杨蕊, 鲍婧婷, 王进. 生态修复领域菌藻共生体系研究进展[J]. 中国沙漠, 2025, 45(3): 93-101. |
[7] | 牧仁, 乔俊, 徐光甫, 韩进夫, 俞潇, 孔垂玖, 李新乐. 石墨烯添加对干旱区牧草生长及土壤养分的影响[J]. 中国沙漠, 2025, 45(2): 155-165. |
[8] | 王洋, 王振亭. 植物固沙最低盖度的理论计算[J]. 中国沙漠, 2025, 45(2): 97-101. |
[9] | 何玉惠, 刘新平, 胡鸿姣, 徐远志. 降水和放牧对沙质草地优势植物出苗和存活的影响[J]. 中国沙漠, 2025, 45(1): 103-111. |
[10] | 郝芳唯, 宋兆斌, 李香云, 岳平, 张晓雪, 王怀海, 赵杏花, 左小安. 5年降水限制后荒漠草原植物多样性和生产力恢复特征[J]. 中国沙漠, 2025, 45(1): 112-120. |
[11] | 张蕊, 赵学勇, 李刚, 武雅琳, 刘新平. 干旱半干旱区草地植物-土壤响应降水和管理措施的研究综述[J]. 中国沙漠, 2025, 45(1): 131-140. |
[12] | 马登科, 何志斌, 赵文智, 杜军, 孙玮皓, 王帅, 李睿, 刘冰. 干旱区沙生药用植物生态效益综述[J]. 中国沙漠, 2025, 45(1): 55-62. |
[13] | 李军, 周发元, 焦亮, 李开明, 李超灿. 1960—2022年河西走廊主要气候要素特征及气候生产潜力[J]. 中国沙漠, 2024, 44(6): 14-25. |
[14] | 方进, 刘任涛, 赵璇, 杨敏. 绿洲农田中小型土壤动物多样性与功能群结构对土壤质地的响应[J]. 中国沙漠, 2024, 44(6): 155-166. |
[15] | 宁婷, 张定海, 赵有益, 江晶. 腾格里沙漠土壤水分含量与地形、植被的关系[J]. 中国沙漠, 2024, 44(5): 133-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn