1 |
Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].Netherlands:Springer,1942.
|
2 |
Wang D, Wang Y, Yang B,et al.Statistical analysis of sand grain/bed collision process recorded by high‐speed digital camera[J].Sedimentology,2008,55(2):461-470.
|
3 |
Jiang C W, Parteli E J R, Dong Z B,et al.Wind-tunnel experiments of aeolian sand transport reveal a bimodal probability distribution function for the particle lift-off velocities[J].Catena,2022,217:106496.
|
4 |
Zhang Y, Wang Y, Jia P.Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera[J].Science China Physics,Mechanics Astronomy,2014,57:1137-1143.
|
5 |
O'Brien P, Neuman C M K.PTV measurement of the spanwise component of aeolian transport in steady state[J].Aeolian Research,2016,20:126-138.
|
6 |
O'Brien P, Neuman C M K.An experimental study of the dynamics of saltation within a three-dimensional framework[J].Aeolian Research,2018,31:62-71.
|
7 |
Yang B, Wang Y, Zhang Y.The 3-D spread of saltation sand over a flat bed surface in aeolian sand transport[J].Advanced Powder Technology,2009,20(4):303-309.
|
8 |
O'Brien P, McKenna Neuman C.Experimental validation of the near‐bed particle‐borne stress profile in aeolian transport systems[J].Journal of Geophysical Research:Earth Surface,2019,124(11):2463-2474.
|
9 |
Kang L Q, Zou X Y, Zhao G D,et al.Wind tunnel investigation of horizontal and vertical sand fluxes of ascending and descending sand particles in aeolian sand transport[J].Earth Surface Processes and Landforms,2016,41(12):1647-1657.
|
10 |
Ho T D, Valance A, Dupont P,et al.Scaling laws in aeolian sand transport[J].Physical Review Letters,2011,106(9):094501.
|
11 |
Zhang Y, Li M, Wang Y,et al.Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment[J].Journal of Arid Land,2019,11:664-673.
|
12 |
Creyssels M, Dupont P, El Moctar A O,et al.Saltating particles in a turbulent boundary layer:experiment and theory[J].Journal of Fluid Mechanics,2009,625:47-74.
|
13 |
Mei F M, Zhou H J, Su J,et al.A new hybrid algorithm based on Kalman filter-Hungarian algorithm for tracking aeolian saltating particle in the high-speed video[J].Earth Surface Processes and Landforms, 2024, .
|
14 |
Breiman L.Random forests[J].Machine Learning,2001,45:5-32.
|
15 |
Geurts P, Ernst D, Wehenkel L.Extremely randomized trees[J].Machine Learning,2006,63:3-42.
|
16 |
Friedman J H.Greedy function approximation:a gradient boosting machine[J].Annals of Statistics,2001:1189-1232.
|
17 |
Chen T, Guestrin C.Xgboost:a scalable tree boosting system[C]//Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794.
|
18 |
Boroughani M, Pourhashemi S, Gholami H,et al.Predicting of dust storm source by combining remote sensing,statistic-based predictive models and game theory in the Sistan watershed,southwestern Asia[J].Journal of Arid Land,2021,13(11):1103-1121.
|
19 |
Boroughani M, Pourhashemi S, Hashemi H,et al.Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping[J].Ecological Informatics,2020,56:101059.
|
20 |
Choubin B, Hosseini F S, Rahmati O,et al.Mapping of salty aeolian dust-source potential areas:Ensemble model or benchmark models?[J].Science of The Total Environment,2023,877:163419.
|
21 |
Gholami H, Mohamadifar A, Sorooshian A,et al.Machine-learning algorithms for predicting land susceptibility to dust emissions:the case of the Jazmurian Basin,Iran[J].Atmospheric Pollution Research,2020,11(8):1303-1315.
|
22 |
Rahmati O, Mohammadi F, Ghiasi S S,et al.Identifying sources of dust aerosol using a new framework based on remote sensing and modelling[J].Science of The Total Environment,2020,737:139508.
|
23 |
Iban M C, Bilgilioglu S S.Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost,NGBoost,and LightGBM) with eXplainable Artificial Intelligence (XAI) approach[J].Stochastic Environmental Research and Risk Assessment,2023,37(6):2243-2270.
|
24 |
Zafari A, Zurita-Milla R, Izquierdo-Verdiguier E.Land cover classification using extremely randomized trees:a kernel perspective[J].IEEE Geoscience and Remote Sensing Letters,2019,17(10):1702-1706.
|
25 |
李森,颜长珍.基于ChinaCover数据集的绿洲结构数据制图:以河西内陆河流域为例[J].中国沙漠,2023,43(3):230-242.
|
26 |
蒋小芳,徐青霞,段翰晨,等.黄河景电灌区土壤盐渍化反演的多模型对比[J].中国沙漠,2023,43(5):18-30.
|
27 |
吴敏,温小虎,冯起,等.基于随机森林模型的干旱绿洲区张掖盆地地下水水质评价[J].中国沙漠,2018,38(3):657-663.
|
28 |
张亦然,刘廷玺,童新,等.基于多源遥感和机器学习方法的科尔沁沙地植被覆盖度反演[J].中国沙漠,2022,42(3):187-195.
|
29 |
Houghton J E, Nichols T E, Griffiths J,et al.Automated classification of estuarine sub‐depositional environment using sediment texture[J].Journal of Geophysical Research:Earth Surface,2023,128(2):e2022JF006891.
|
30 |
Nichols T E, Worden R H, Houghton J E,et al.Sediment texture and geochemistry as predictors of sub-depositional environment in a modern estuary using machine learning:a framework for investigating clay-coated sand grains[J].Sedimentary Geology,2023,458:106530.
|
31 |
Zheng,D Y, Hou M C, Chen A Q,et al.Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs:a case study from Sichuan Basin,China[J].Journal of Petroleum Science and Engineering,2022,215,110610.
|
32 |
Bergstra J, Bardenet R, Bengio Y,et al.Algorithms for hyper-parameter optimization[C]//International Conference on Neural Information Processing Systems.2011.
|
33 |
Beguería S.Validation and evaluation of predictive models in hazard assessment and risk management[J].Natural Hazards,2006,37:315-329.
|
34 |
Fawcett T.An introduction to ROC analysis[J].Pattern recognition letters,2006,27(8):861-874.
|
35 |
al Pedregosaet.Scikit-learn:machine learning in python[J].Journal of Machine Learning Research,2011,12:2825-2830.
|
36 |
Canbek G, Sagiroglu S, Temizel T T,et al.Binary classification performance measures/metrics:a comprehensive visualized roadmap to gain new insights[C]//2017 International Conference on Computer Science and Engineering(UBMK).IEEE,2017:821-826.
|
37 |
Chicco D, Jurman G.The advantages of the Matthews correlation coefficient(MCC)over F1 score and accuracy in binary classification evaluation[J].BMC Genomics,2020,21(1):1-13.
|
38 |
Silla C N, Freitas A A.A survey of hierarchical classification across different application domains[J].Data Mining and Knowledge Discovery,2011,22:31-72.
|
39 |
Akay H.Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques[J].CATENA,2021,206:105524.
|
40 |
Yang J M, He Q, Liu Y.Winter-Spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the Western Tianshan Mountains,China[J].Remote Sensing,2022,14(6):1340.
|
41 |
Duan T, Anand A, Ding D Y,et al.Ngboost:natural gradient boosting for probabilistic prediction[C]//International Conference on Machine Learning.PMLR,2020:2690-2700.
|
42 |
MacQueen J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.1967:281-297.
|
43 |
Ester M, Kriegel H P, Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//KDD'96:Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.1996:226-231.
|
44 |
Bian J, Tian D, Tang Y,et al.Trajectory data classification:a review[J].ACM Transactions on Intelligent Systems and Technology(TIST),2019,10(4):1-34.
|