Please wait a minute...
img

官方微信

高级检索
中国沙漠  2018, Vol. 38 Issue (1): 1-7    DOI: 10.7522/j.issn.1000-694X.2017.00091
    
绿洲边缘人工固沙植被自组织过程
赵文智1, 郑颖1,2, 张格非1
1. 中国科学院西北生态环境资源研究院 中国生态系统研究网络临泽内陆河流域研究站/内陆河流域生态水文重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049
Self-organization Process of Sand-fixing Plantation in A Desert-oasis Ecotone, Northwestern China
Zhao Wenzhi1, Zheng Ying1,2, Zhang Gefei1
1. Linze Inland River Basin Research Station/Key Laboratory of Inland River Basin Ecohydrology, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2187 KB)  
摘要: 在对植被自组织过程研究进展评述的基础上,研究了河西走廊荒漠绿洲边缘人工固沙植被格局40年来自组织及种群自疏过程,发现在干旱区,特别是降水量200 mm以下的荒漠区,绿洲边缘雨养或者降水和地下水共同维系的沙丘人工植被也会发生自组织过程,原来基本均匀栽植的植被出现斑块化,最大斑块面积、斑块密度、斑块聚集度在20~30 a出现,但种群自疏过程并未遵循随植被发育年龄变化的规律,而与生境与绿洲的距离及生境地下水埋深显著相关。未来应加强在气候变化和人类干扰条件下植被格局发生突变的阈值范围的研究,也应加强干旱区人工植被自组织过程及其变化等的研究。
关键词: 自组织植被格局人工固沙植被梭梭绿洲边缘    
Abstract: The two-phase mosaics of vegetation alternating with bare ground, was frequently observed in arid ecosystem. Theoretical studies suggest that this range of spatial patterns is the result of self-organization as a consequence of resource redistribution. On the basis of the review of self-organized process of vegetation, the spatial patterns and self-thinning process of Haloxylon ammodendron plantation for more than 40 years were analyzed in an oasis-desert ecotone in the Hexi Corridor. Results showed that a self-organized process of sand-fixing plantation would also take place in arid areas especially where precipitation is less than 200 mm. The overall spatial pattern of H. ammodendron shifted from initially uniform distribution to clustered, the landscape patches are becoming fragmented. But the self-thinning process of H. ammodendron plantation don't follow the natural order of the developmental stages, it is most relevant to the distance between the habitats of H.ammodendron and oasis marginal, and the groundwater depth in the habitats of H.ammodendron plantation. Ecosystem may abruptly shifted from one alternative stable state to another one, accompanied with great changes, under climate change and exacerbated human disturbance, the research of threshold range of vegetation pattern regime shift should be strengthened in the future, and the research of self-organized process of the sand-fixing plantation in the arid areas should also be strengthened.
Key words: self-organization process    vegetation patterns    sand-fixing plantation    Haloxylon ammodendron    desert-oasis ecotone
收稿日期: 2017-08-02 出版日期: 2018-01-20
:  Q948.15  
基金资助: 国家自然科学基金项目(41471435)
作者简介: 赵文智(1966-),男,陕西定边人,研究员,主要从事恢复生态和生态水文学研究。E-mail:zhaowzh@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵文智
郑颖
张格非

引用本文:

赵文智, 郑颖, 张格非. 绿洲边缘人工固沙植被自组织过程[J]. 中国沙漠, 2018, 38(1): 1-7.

Zhao Wenzhi, Zheng Ying, Zhang Gefei. Self-organization Process of Sand-fixing Plantation in A Desert-oasis Ecotone, Northwestern China. JOURNAL OF DESERT RESEARCH, 2018, 38(1): 1-7.

链接本文:

http://119.78.100.150/zgsm/CN/10.7522/j.issn.1000-694X.2017.00091        http://119.78.100.150/zgsm/CN/Y2018/V38/I1/1

[1] Haken H.Information and Self-organization:A Macroscopic Approach to Complex Systems[M].Berlin,Germany:Springer,2010,262.
[2] DeAngelis D L.Self-organizing processes in landscape pattern and resilience:a review[J].ISRN Ecology,2012(4/5/6):18.
[3] Ludwig J A,Tongway D J.Spatial organisation of landscapes and its function in semi-arid woodlands,Australia[J].Landscape Ecology,1995,10(1):51-63.
[4] Couteron P,Lejeune O.Periodic spotted patterns in semi-arid vegetation explained by a propagation-inhibition model[J].Journal of Ecology,2001,89(4):616-628.
[5] Zelnik Y R,Kinast S,Yizhaq H,et al.Regime shifts in models of dryland vegetation[J].Philosophical Transactions,2013,371(2004):20120358.
[6] Rietkerk M,Dekker S C,de Ruiter P C,et al.Self-organized patchiness and catastrophic shifts in ecosystems[J].Science,2004,305(5692):1926-1929.
[7] Scheffer M,Carpenter S,Foley J A,et al.Catastrophic shifts in ecosystems[J].Nature,2001,413(6856):591-596
[8] Harris J A,Hobbs R J,Higgs E,et al.Ecological restoration and global climate change[J].Restoration Ecology,2006,14(2):170-176.
[9] D'Odorico P,Caylor K,Okin G S,et al.On soil moisture vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems[J].Journal of Geophysical Research:Biogeosciences,2007,112(G4):10.
[10] Cramer M D,Barger N N.Are Namibian "fairy circles" the consequence of self-organizing spatial vegetation patterning?[J].PloS One,2013,8(8):e70876.
[11] Call C A,Roundy B A.Perspectives and processes in revegetation of arid and semiarid rangelands[J].Journal of Range Management,1991,44(6):543-549.
[12] Lawley V,Parrott L,Lewis M,et al.Self-organization and complex dynamics of regenerating vegetation in an arid ecosystem:82 years of recovery after grazing[J].Journal of Arid Environments,2013,88:156-164.
[13] Wang G,Ding Y,Shen Y,et al.Environmental degradation in the Hexi Corridor region of China over the last 50 years and comprehensive mitigation and rehabilitation strategies[J].Environmental Geology,2003,44(1):68-77.
[14] Greig-Smith P,Kershaw K A.The significance of pattern in vegetation[J].Plant Ecology,1958,8(3):189-192.
[15] Valentin C,d'Herbès J M,Poesen J.Soil and water components of banded vegetation patterns[J].Catena,1999,37(1):1-24.
[16] Leprun J C.The influences of ecological factors on tiger bush and dotted bush patterns along a gradient from Mali to northern Burkina Faso[J].Catena,1999,37(1):25-44.
[17] d'Herbès J M,Valentin C,Tongway D J,et al.Banded Vegetation Patterns and Related Structures[M].New York,USA:Springer,2001:1-19.
[18] Aguiar M R,Paruelo J M,Sala O E,et al.Ecosystem responses to changes in plant functional type composition:an example from the Patagonian steppe[J].Journal of Vegetation Science,1996,7(3):381-390.
[19] Bromley J,Brouwer J,Barker A P,et al.The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment,south-west Niger[J].Journal of Hydrology,1997,198(1):1-29.
[20] Klausmeier C A.Regular and irregular patterns in semiarid vegetation[J].Science,1999,284(5421):1826-1828.
[21] von Hardenberg J,Meron E,Shachak M,et al.Diversity of vegetation patterns and desertification[J].Physical Review Letters,2001,87(19):198101.
[22] Turing A M.The chemical basis of morphogenesis[J].Philosophical Transactions of the Royal Society of London B:Biological Sciences,1952,237(641):37-72.
[23] Lefever R,Lejeune O.On the origin of tiger bush[J].Bulletin of Mathematical Biology,1997,59(2):263-294.
[24] Rovinsky A B,Menzinger M.Chemical instability induced by a differential flow[J].Physical Review Letters,1992,69(8):1193.
[25] Borgogno F,D'Odorico P,Laio F,et al.Mathematical models of vegetation pattern formation in ecohydrology[J].Reviews of Geophysics,2009,47(1).
[26] Manfreda S,McCabe M F,Fiorentino M,et al.Scaling characteristics of spatial patterns of soil moisture from distributed modelling[J].Advances in Water Resources,2007,30(10):2145-2150.
[27] Manfreda S,Caylor K K,Good S P.An ecohydrological framework to explain shifts in vegetation organization across climatological gradients[J].Ecohydrology,2017,10(3):e1809.
[28] Vincenot C E,Carteni F,Mazzoleni S,et al.Spatial self-organization of vegetation subject to climatic stress-insights from a system dynamics-individual-based hybrid model[J].Frontiers in Plant Science,2016(7):636-642.
[29] Schlesinger W H,Abrahams A D,Parsons A J,et al.Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico:I.rainfall simulation experiments[J].Biogeochemistry,1999,45(1):21-34.
[30] Orians G H,Milewski A V.Ecology of Australia:the effects of nutrient-poor soils and intense fires[J].Biological Reviews,2007,82(3):393-423.
[31] Houlahan J E,Currie D J,Cottenie K,et al.Compensatory dynamics are rare in natural ecological communities[J].Proceedings of the National Academy of Sciences,2007,104(9):3273-3277.
[32] Butterfield B J,Betancourt J L,Turner R M,et al.Facilitation drives 65 years of vegetation change in the Sonoran Desert[J].Ecology,2010,91(4):1132-1139.
[33] HilleRisLambers R,Rietkerk M,van den Bosch F,et al.Vegetation pattern formation in semi-arid grazing systems[J].Ecology,2001,82(1):50-61.
[34] Von Hardenberg J,Kletter A Y,Yizhaq H,et al.Periodic versus scale-free patterns in dryland vegetation[J].Proceedings of the Royal Society of London B:Biological Sciences,2010:277:1771-1776.
[35] Lefever R,Barbier N,Couteron P,et al.Deeply gapped vegetation patterns:on crown/root allometry,criticality and desertification[J].Journal of Theoretical Biology,2009,261(2):194-209.
[36] Rietkerk M,Boerlijst M C,van Langevelde F,et al.Self-organization of vegetation in arid ecosystems[J].The American Naturalist,2002,160(4):524-530.
[37] Nathan J,von Hardenberg J,Meron E.Spatial instabilities untie the exclusion-principle constraint on species coexistence[J].Journal of Theoretical Biology,2013,335:198-204.
[38] Gilad E,von Hardenberg J,Provenzale A,et al.Ecosystem engineers:from pattern formation to habitat creation[J].Physical Review Letters,2004,93(9):098105.
[39] Lejeune O,Tlidi M,Lefever R.Vegetation spots and stripes:dissipative structures in arid landscapes[J].International Journal of Quantum Chemistry,2004,98(2):261-271.
[40] Meron E.Pattern-formation approach to modelling spatially extended ecosystems[J].Ecological Modelling,2012,234:70-82.
[41] Meron E,Yizhaq H,Gilad E.Localized structures in dryland vegetation:forms and functions[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2007,17(3):037109.
[42] Padilla F M,Pugnaire F I.The role of nurse plants in the restoration of degraded environments[J].Frontiers in Ecology and the Environment,2006,4(4):196-202.
[43] Reynolds J F,Virginia R A,Kemp P R,et al.Impact of drought on desert shrubs:effects of seasonality and degree of resource island development[J].Ecological Monographs,1999,69(1):69-106.
[44] Kinast S,Zelnik Y R,Bel G,et al.A pattern-forming instability co-driven by distinct mechanisms increases pattern diversity[J].arXiv preprint arXiv:2013,1311.0411.
[45] Tongway D J,Valentin C,Seghieri J.Banded Vegetation Patterning in Arid and Semiarid Environments:Ecological Processes and Consequences for Management[J] New York,USA:Springer-Verlag,2001.
[46] Kefi S,Rietkerk M,Katul G G.Vegetation pattern shift as a result of rising atmospheric CO 2 in arid ecosystems[J].Theoretical Population Biology,2008,74(4):332-344.
[47] Seuront L,Spilmont N.Self-organized criticality in intertidal microphytobenthos patch patterns[J].Physica A:statistical mechanics and its applications,2002,313(3):513-539.
[48] Barbier N,Couteron P,Lejoly J,et al.Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems[J].Journal of Ecology,2006,94(3):537-547.
[49] Janssen R H H,Meinders M B J,Van N E S,et al.Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation-climate system[J].Global Change Biology,2008,14(5):1104-1112.
[50] 张宏,慈龙骏.对荒漠化几个理论问题的初步探讨[J].地理科学,1999,19(5):446-450.
[51] 王蕙,赵文智,常学向.黑河中游荒漠绿洲过渡带土壤水分与植被空间变异[J].生态学报,2007,27(5):1731-1739
[52] 周洪华,陈亚宁,李卫红.塔里木河下游绿洲-荒漠过渡带植物多样性特征及优势种群分布格局[J].中国沙漠,2009,29(4):688-696.
[53] Liu H,Zhao W,He Z.Self-organized vegetation patterning effects on surface soil hydraulic conductivity:A case study in the Qilian Mountains,China[J].Geoderma,2013,192:362-367.
[54] 何志斌,赵文智.黑河流域荒漠绿洲过渡带两种优势植物种群空间格局特征[J].应用生态学报,2004,15(6):947-952
[55] 张化永,邬建国,韩兴国.植被的组织有序度及其全球格局[J].植物生态学报,2002,26(2):129-139.
[56] 蒋建生,任继周.草地农业生态系统的自组织特性[J].草业学报,2002,11(2):1-6.
[57] 李小雁.干旱地区土壤-植被-水文耦合\,响应与适应机制[J].中国科学:地球科学,2011,41(12):1721-1730.
[1] 郑颖, 赵文智, 张格非. 基于V_Hegyi竞争指数的绿洲边缘人工固沙植被梭梭(Haloxylon ammodendron)的种群竞争[J]. 中国沙漠, 2017, 37(6): 1127-1134.
[2] 刘江, 徐先英, 张荣娟, 丁爱强, 付贵全, 赵鹏. 人工梭梭(Haloxylon ammodendron)林大沙鼠(Rhombomys opimus)鼠洞空间格局[J]. 中国沙漠, 2017, 37(6): 1180-1188.
[3] 张定海, 李新荣, 张鹏. 生态水文阈值在中国沙区人工植被生态系统管理中的意义[J]. 中国沙漠, 2017, 37(4): 678-688.
[4] 高志娟, 谢双全, 吕新华, 吴泽昂, 王海霞, 庄丽. 梭梭(Haloxylon ammodendron)居群间系统发育关系[J]. 中国沙漠, 2017, 37(3): 462-468.
[5] 李宜科, 赵成义, 杨瑞红. 准噶尔盆地南缘梭梭(Haloxylon ammodendron)群落种内竞争关系[J]. 中国沙漠, 2016, 36(2): 335-341.
[6] 陈永宝, 胡顺军, 朱海, 罗根. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落土壤蒸发特征[J]. 中国沙漠, 2016, 36(1): 190-198.
[7] 王国华, 赵文智. 梭梭(Haloxylon ammodendron)种子密度对萌发及幼苗生长的影响[J]. 中国沙漠, 2015, 35(5): 1248-1253.
[8] 尹本丰, 张元明, 陶冶. 白梭梭(Haloxylon persicum)灌丛下雾凇的散布格局及其对土壤含水量的影响[J]. 中国沙漠, 2015, 35(4): 951-958.
[9] 王艳莉, 刘立超, 高艳红, 杨昊天, 李刚. 人工固沙植被区土壤水分动态及空间分布[J]. 中国沙漠, 2015, 35(4): 942-950.
[10] 李超, 董治宝. 基于自组织理论的巴丹吉林沙漠高大沙山空间分布特征研究[J]. 中国沙漠, 2015, 35(2): 294-300.
[11] 李丙文, 王桂芬, 张忠良, 许波, 王强, 范敬龙, 李生宇, 邱永志, 常青. 种植于人工梭梭(Haloxylon ammodendron)林的肉苁蓉(Cistanche deserticola)个体质量特征[J]. 中国沙漠, 2014, 34(4): 1049-1054.
[12] 杨淇越, 赵文智. 梭梭(Haloxylon ammodendron)叶片气孔导度与气体交换对典型降水事件的响应[J]. 中国沙漠, 2014, 34(2): 419-425.
[13] 楚新正, 马倩, 马晓飞, 徐莉, 马婕. 梭梭(Haloxylon ammodendron)主根周围土壤特征[J]. 中国沙漠, 2014, 34(1): 170-175.
[14] 肖生春, 肖洪浪, 彭小梅. 梭梭(Haloxylon ammodendron)不宜用于树木年轮学研究[J]. 中国沙漠, 2013, 33(6): 1692-1698.
[15] 李 兴1,2, 蒋 进1, 宋春武1, 陈 明3, 殷文娟4, 张 恒1,2. 不同坡向梭梭幼苗的生长状况和适应特征[J]. 中国沙漠, 2013, 33(1): 101-105.