Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2013, Vol. 33 Issue (5): 1377-1384    DOI: 10.7522/j.issn.1000-694X.2013.00202
Biology and Soil     
Response of Transpiration to Water Vapour Pressure Defferrential of Populus euphratica
LI Wei, SI Jian-hua, FENG Qi, YU Teng-fei
Key Laboratory of Eco-hydrology of Inland River Basin/Alashan Desert Eco-hydrology Experimental Research Station, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Download:  PDF (3777KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Sap flow velocity was measured using thermal dissipation probe continuously on growing season in extreme arid desert riparian Polulus euphratica stand. Response of hourly-step transpiration of P. euphratica to vapor pressure defferrential (VPD) was researched based on the parameters above. The results indicated that: (1) Diurnal patterns of transpiration were impacted by different atmospheric conditions. Lagging behind the process of VPD, dominating transpiration peak was more distinct in sunny days than in cloudy days. (2) P. euphratica avoided excessive transpiration during periods of high VPD in sunny days from May to July,which was acknowledged as highly water consumption. Following increased average monthly VPD, critical threshold of VPD to transpiration (E), counted as 2.13 kPa, 3.01 kPa, 3.82 kPa gradually, showed similar tendency. The phenomenon, quantized by relationship between canopy stomatal resistance (rc) and VPD by linear equation(rc =-2.5423+2.1909*VPD,R2=0.4032) might be interpreted as the result of a gradual canopy stomatal closure as VPD increased. (3) Frequency of sap flow velocity (Fv) peak time of P. euphratica was influenced by different level of photosynthetically active radiation (PAR) and VPD. Fv peak time in relative lower PAR lagged behind that of higher ones, while frequency of Fv peak time appeared as more concentrated under higher VPD than that of lower ones. According to the point above, canopy stomatal responded more sensitive to ambient water vapor pressure deficit under highly VPD than others. Concluded above, it is expected to provide theoretical significance to water use of desert riparian forest from the quantized relationship between E and VPD.

Key words:  transpiration      vapour pressure deficit      thermal dissipation probe      canopy resistance      Polulus euphratica     
Received:  23 July 2012      Published:  05 January 2013
ZTFLH:  P426.2  
Articles by authors
LI Wei
SI Jian-hua
FENG Qi
YU Teng-fei

Cite this article: 

LI Wei, SI Jian-hua, FENG Qi, YU Teng-fei. Response of Transpiration to Water Vapour Pressure Defferrential of Populus euphratica. JOURNAL OF DESERT RESEARCH, 2013, 33(5): 1377-1384.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00202     OR     http://www.desert.ac.cn/EN/Y2013/V33/I5/1377

[1]Feng Q,Cheng G D.Current situation, problems and rational utilization of water resources in arid north-western China[J].Journal of Arid Environments,1998,40:373-382.

[2]Xiao S C,Xiao H L,Si J H,et al.Lake level changes recorded by tree rings of lakeshore shrubs:a case study at the lake west-Juyan,Inner Mongolia,China[J].Journal of Integrative Plant Biology,2005,47:1303-1314.

[3]刘晓静,赵平,蔡锡安,等.不同径级马占相思(Acacia mangium)整树蒸腾的湿、干季变化[J].生态学报,2009,29(2):619-626.

[4]Kupper P,Sellin A,Tenhunen J,et al.Effect of branch position on water relation and gas exchange of European larch trees in an alpine community[J].Trees,2006,20(3):265-272.

[5]赵平,饶兴权,马玲,等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J].生态学报,2006,26(12):4051-4058.

[6]David T S,Ferreira M I, David J S,et al.Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit[J].Oecologia,1997,110:153-159.

[7]Huang Y Q,Zhao P,Zhang Z F,et al.Transpiration of Cyclobalanopsis glauca(syn.Quercus glauca)stand measured by sap-flow method in a karst rocky terrain spring dry season[J].Ecological Research,2009,24:791-801.

[8]Hernández-Santana V,David T S,Martinez-Fernández J.Environmental and plant-based controls of water use in a Mediterranean oak stand[J].Forest Ecology and Management,2008,25(11):3707-3715.

[9]Monteith J L.A reinterpretation of stomatal responses to humidity[J].Plant,Cell & Environment,1995,18:357-364.

[10]Cochard H,Coll L,Roux X L,et al.Unravelling the effects of plant hydraulics on stomatal closure during water stress in walnut[J].Plant Physiology,2002,128:282-290.

[11]Salleo S,Nardini A,Pitt F,et al.Xylem cavitation and hydraulic control of stomatal conductance in Laurel(Laurus nobilis)[J].Plant,Cell & Environment,2000,23:71-79.

[12]Gazal R M,Scott R L,Goodrich D C,et al.Controls on transpiration in a semiarid riparian cottonwood forest[J].Agriculture and Forest Meteorology,2006,137:56-67.

[13]Du S,Wang Y L,Kume T,et al.Sapflow characteristic and climatic responses in three forest species in the semiarid Loess Plateau region of China[J].Agriculture and Forest Meteorology,2011,151(1):1-10.

[14]David T S,Ferreira M I,Pereira J S,et al.Constraints on transpiration from an evergreen oak tree in southern Portugal[J].Agriculture and Forest Meteorology,2004,122:193-205.

[15]曹生奎,冯起,司建华,等.胡杨光合蒸腾与影响因子间关系的研究[J].干旱区资源与环境,2012,26(4):155-159.

[16]刘建平,韩路,龚卫江,等.胡杨、灰叶胡杨光合、蒸腾作用比较研究[J].塔里木农垦大学学报,2004,16(3):1-6

[17]司建华,冯起,张小由,等.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠,2007,27(3):442-447.

[18]白云岗,宋郁东,周宏飞,等.应用热脉冲技术对胡杨树干液流变化规律的研究[J].干旱区地理,2005,28(3):373-375.

[19]Granier A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiology,1987,3:309-320.

[20]Wang Y L,Liu G B,Kume T,et al.Estimating water use of a black locust plantation by the thermal dissipation probe method in the semiarid region of Loess Plateau, China[J].Journal of Forest Research,2010,15:241-251.

[21]Granier A.Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres[J].Annals of Forest Science,1985,42:193-200.

[22]Tang J W,Bolstad P V,Ewers B E,et al.Sap flux-up scaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States[J].Journal of Geophysical Research,2006,111:G02009.

[23]Compbell G S,Norman J M.An introduction to Environmental Biophysics[M].New York,USA:Springer Netherlands Publisher,1998:37-75.

[24]Monteith J L.Symposia of the Society for Experimental Biology[J].Evaporation and Environment.1965,19:205-234.

[25]Granier A,Biron P,Kiistner B,et al.Comparisons of xylem sapflow and water vapour flux at the stand level and derivation of canopy conductance for Scots Pine[J].Theoretical and Applied Climatology,1996,53:115-122.

[26]Vose J M,Harvey G J,Elliott K.J,et al.Measuring and modeling tree and stand level transpiration[M]//Water Encyclopedia.John Wiley and Sons,2005:732-741.

[27]Lhomme D,Elguero E,Chehbouni A,et al.Surface water and climate-stomatal control Transpiration:examination of Monteith's formulation of canopy resistance[J].Water Resources Research,1998,34(9):2301-2308.

[28]Zhang H,Morison J I L,Simmonds L P.Transpiration and water relation of poplar trees growing close to the water table[J].Tree Physiology,1999,19:563-573.

[29]Chang X X,Zhao W Z,Zhang Z H,et al.Sap flow and tree conductance of shelter-belt in arid region of China[J].Agricultural and Forest Meteorology,2006,138(1/4):132-141.

[30]Arneth A,Keliher F M,Bauer G,et al.Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia[J].Tree Physiology,1996,16:247-255.

[31]Anfodillo T,Rento S,Carraro V,et al.Tree water relation and climate variations at the alpine timberline:seasonal changes of sap flux and xylem water potential in Larix decidua Miller,Picea abies(L.) Karst.And Pinus cembra L[J].Annals of Forest Science,1998,55:159-172.

[32]Quentin A G,O’Grady A P,Beadle C L,et al.Responses of transpiration and canopy conductance to partial defoliation of Eucalyptus globulus trees[J].Agricultural and Forest Meteorology,2011,151:356-364.

[33]Kumagai T,Saitoh T M,Sato Y,et al.Transpiration,canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak[J].Journal of Hydology,2004,287:237-251.

[34]Wullschleger S,Wilson K B,Hanson P J.Environmental control of whole plant transpiration,canopy conductance and estimates of the decoupling coefficient for large red maple trees[J].Agricultural and Forest Meteorology,2000,104(2):157-168.

[35]赵平.整树水力导度协同冠层气孔导度调节森林蒸腾[J].生态学报,2011,31(4):1164-1173.

[36]王丁,薛建辉,姚建.林木水力结构与抗寒性研究综述[J].中国沙漠,2009,29(4):711-717.

[37]Hogg E H,Hurdle P A.Sap flow in trembling aspen:implications for stomatal responses to vapour pressure deficit[J].Tree Physiology,1997,17:501-509.

[38]王海珍,韩路,李志军.胡杨、灰叶胡杨蒸腾耗水规律初步研究[J].干旱区资源与环境,2009,23(8):186-189.

[39]周孝明,陈亚宁,李卫红,等.塔里木河下游胡杨树干液流特征研究[J].中国沙漠,2008,28(4):673-678.

[40]赵良菊,肖红浪,程国栋,等.黑河下游河岸林植物水分来源初步研究[J].地球学报,2008,29(6):709-718.

[41]樊大勇,谢宗强.木质部导管空穴化研究中的几个热点问题[J].植物生态学报,2004,28(1):126-132.

[42]Zeppel M J B,Murray B R,Barton C,et al.Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia[J].Functional Plant Biology,2004,31:461-470.

[43]朱成刚,李卫红,马晓东,等.塔里木河下游干旱胁迫下的胡杨叶绿素荧光特性研究[J].中国沙漠,2011,31(4):927-936.

[44]付爱红,李卫红,陈亚宁,等.极端干旱区胡杨宽卵形叶水分变化影响因子分析[J].中国沙漠,2012,32(1):65-72.

No Suggested Reading articles found!