Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2014, Vol. 34 Issue (6): 1527-1536    DOI: 10.7522/j.issn.1000-694X.2013.00314
    
Short-term Effect of Phloem Girdling on Water Potential and Photosynthetic Characteristics in Karelinia caspica
Tang Gangliang1,2, Li Xiangyi1, Lin Lisha1, Li Lei1,2, Lu Jianrong1,2
1. State Key Laboratory of Desert and Oasis Ecology/Cele National Station of Observation & Research for Desert-Grassland Ecosystem in Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (2711KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Plants grow in the southern edge of Taklimakan Desert in the growing season often suffer impact of pests and grazing. Our general objective was to know the effects of short-term phloem girdling disturbance on physiological parameters in Karelinia caspica. Specifically, we want to know the effect of different degrees of girdling on physiological parameters in K.caspica and provide the basic data for revealing the possible mechanisms of photosynthetic changes in K.caspica caused by girdling. So we set three different types of girdling: normal branch, moderate girdling, severe girdling, and observed responses of stomatal conductance, water potential, photosynthetic pigments, chlorophyll fluorescence parameters in K. caspica under the conditions of girdling after about 10 days. We found effect of different-degree-girdling on K.caspica were different. That is to say, the change of physiological parameters in K.caspica under moderate girdling is not obvious. However, severe girdling can significantly reduce stomatal conductance, predawn water potential and midday water potential, chlorophyll content and carotenoids content in K.caspica. The severe girdling also restrained the original photosynthetic reaction of K.caspica, and damaged the structure and function of PSⅡ under such conditions. The activity of PSⅡ declined after girdling. The processes of absorption, transmission, conversion and electron capture of light energy in photosynthetic organs ware also restrained. The energy used for dissipate will significantly increase. When faced with mechanical damage of phloem caused by insect and people, if the phloem is not completely damaged, plants may be able to make the function of physiological returned to normal through self-repair of tissue. While plant suffered severe damage may die. We should better avoid the phloem be completely eroded. There may a carbohydrate-independent mechanism in the effect of photosynthetic rate on K. caspica under the condition of girdling exist.
Key words:  chlorophyll fluorescence      Karelinia caspica      photosynthetic pigments      stomatal conductance      water potential     
Received:  25 July 2013      Published:  20 November 2014
ZTFLH:  Q945.79  
Corresponding Authors:  李向义(Email:lixy@ms.xjb.ac.cn)     E-mail:  lixy@ms.xjb.ac.cn

Cite this article: 

Tang Gangliang, Li Xiangyi, Lin Lisha, Li Lei, Lu Jianrong. Short-term Effect of Phloem Girdling on Water Potential and Photosynthetic Characteristics in Karelinia caspica. JOURNAL OF DESERT RESEARCH, 2014, 34(6): 1527-1536.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00314     OR     http://www.desert.ac.cn/EN/Y2014/V34/I6/1527

[1] Di V C,Petito A,Buccheri M.Effect of girdling on gas exchanges and leaf mineral content in the “independence” nectarine[J].Journal of Plant Nutrition,2011,24(7):1047-1060.
[2] Roper T R,Williams L E.Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application[J].Plant Physiology,1989,89(4):1136-1140.
[3] Schaper H,Chacko E K.Effect of irradiance,leaf age,chlorophyll content and branch-girdling on gas exchange of cashew (Anacardium occidentale L.) leaves[J].Journal of Horticultural Science,1993,68(4):541-550.
[4] Urban L,Alphonsout L.Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves[J].Tree Physiology,2007,27(3):345-352.
[5] Zhou R,Quebedeaux B.Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source-sink manipulation[J].Journal of the American Society for Horticultural Science,2003,128(1):113-119.
[6] Iglesias D J,Lliso I,Tadeo F R,et al.Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves[J].Physiologia Plantarum,2002,116(4):563-572.
[7] Paul M J,Foyer C H.Sink regulation of photosynthesis[J].Journal of Experimental Botany,2001,52:1383-1400.
[8] Paul M J,Pellny T K.Carbon metabolite feedback regulation of leaf photosynthesis and development[J].Journal of Experimental Botany,2003,54:539-547.
[9] Koch K.E.Carbohydrate-modulated gene expression in plants[J].Annual Review of Plant Biology,1996,47(1):509-540.
[10] Krapp A,Stitt M.An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange,carbohydrates,metabolites,enzyme activities and steady-state transcript levels after cold-girdling source leaves[J].Planta,1995,195(3):313-323.
[11] Jeannette E,Reyss A,Gregory N,et al.Carbohydrate metabolism in a heat-girdled maize source leaf[J].Plant,Cell & Environment,2000,23(1):61-69.
[12] Chanishvili S,Badridze G,Barblishvili T.Influence of girdling on photosynthesis regulation in grapevine[J].Bulletin of the Georgian National Academy of Sciences,2007,175(4):413-417.
[13] 贾磊,安黎哲.花花柴脱盐能力及脱盐结构研究[J].西北植物学报,2004,24(3):510-515.
[14] 王文杰,胡英,王慧梅,等.环剥对红松(Pinus koraiensis)表皮和木质部碳水化合物的影响[J].生态学报,2007,27(8):3472-3481.
[15] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,1999:131-261.
[16] Strasser B J,Strasser R J.Measuring fast fluorescence transients to address environmental questions:the JIP-test[M]//Mathis P.Photosynthesis:From Light to Biosphere.Dordrecht,the Netherlands:Kluwer Academic Publishers.1995:977-980.
[17] 李鹏民,高辉远,Strasser R J.Application of the fast chlorophyll fluorescence induction dynamics in photosynthesis study[J].植物生理与分子生物学学报,2005,31:559-566.
[18] 王庆彬,王恩妲,姜中珠,等.黑土区常见树种水分生理适应性及抗旱特性[J].东北林业大学学报,2009,37:8-9.
[19] 杨培林,彭俊,钟新才.不同水分处理下防护林树种叶水势,茎水势及土水势的研究[J].新疆农业科学,2012,49:273-278.
[20] 曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611-614.
[21] 付爱红,陈亚宁,李卫红,等.干旱,盐胁迫下的植物水势研究与进展[J].中国沙漠,2005,25(5):744-749.
[22] 李向义,林丽莎,张希明,等.塔克拉玛干绿洲外围胡杨林的水分特征研究术[J].应用与环境生物学报,2007,13(6):763-766.
[23] Daudet F A,Améglio T,Cochard H,et al.Experimental analysis of the role of water and carbon in tree stem diameter variations[J].Journal of Experimental Botany,2005,56(409):135-144.
[24] Appenroth K J,St ckel J,Srivastava A,et al.Multiple effects of chromate on the photosynthetic apparatus of spirodela polyrhiza as probed by ojip chlorophyll[J].Environmental Pollution,2001,115(1):49-64.
[25] Collatz J G,Ball T J,Grivet C,Berry A J.Physiological and environmental regulation of stomatal conductance,photosynthesis and transpiration:a model that includes a laminar boundary layer[J].Agricultural and Forest Meteorology 1991,54:107-136.
[26] 段爱旺,孟兆江.作物水分信息采集技术与采集设备[J].中国农业科技导报,2007,9:6-14.
[27] Carlson T N.Modeling stomatal resistance:an overview of the 1989 workshop at the pennsylvania state university[J].Agricultural and Forest Meteorology,1991,54:103-106.
[28] 傅伟,王天铎.一个气孔对环境因子响应的机理性数学模型[J].植物生理学报,1994,20(3):277-284.
[29] 卢振民.环境因素变化对冬小麦气孔阻力的影响[J].植物生态学与地植物学学报,1989,13(2):121-128.
[30] 王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J].植物生态学报,2000,24(6):739-743.
[31] 于强,孙菽芬.植物光合生产力与冠层蒸散模拟研究进展[J].生态学报,1999,19(5):744-753.
[32] 彭世彰,魏征,孔伟丽,等.水肥亏缺下水稻叶片气孔导度与光合速率耦合模型[J].应用基础与工程科学学报,2010,18(2):253-261.
[33] Calatayud P A,Llovera E,Bois J F,et al.Photosynthesis in drought-adapted cassava[J].Photosynthetica,2000,38(1):97-104.
[34] 司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报,2008,28(1):125-130.
[35] 王建林.燕麦叶片光合速率、气孔导度对光强和CO2的响应与模拟[J].华北农学报,2009,24(3):134-137.
[36] 阮成江,李代琼.黄土丘陵区沙棘的蒸腾特性及影响因子[J].应用与环境生物学报,2001,7(4):327-331.
[37] 孙谷畴,赵平,曾小平,等.亚忠带森林演替树种叶片气孔导度对环境水分的水力响应[J].生态学报,2009,29(2):698-705.
[38] 许红梅,高琼,黄永梅,等.黄土高原森林草原区6种植物光合特性研究[J].植物生态学报,2004,28(2):157-163.
[39] Ball J T.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[J].Photosynthesis Research,1987,4:221-224.
[40] Marcelis L F M.Sink strength as a det erminant of dry matter partitioning in the whole plant[J].Journal of Experimental Botany,1996,47(special issue):1281-1291.
[41] 程建峰,胡芬红,沈允钢.NaHSO3对盐生杜氏藻生长和光合色素含量的影响[J].热带海洋学报,2010,29(3):65-70.
[42] 苏行,胡迪琴,林植芳,等.广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J].植物生态学报,2002,26(5):599-604.
[43] Richardson A D,Duigan S P,Berlyn G P.An evaluation of noninvasive methods to estimate foliar chlorophyll content[J].New Phytologist,2002,153(1):185-194.
[44] 尚艳霞,张波,朱鹏锦,等.麻花艽叶片光合色素含量及厚度对UV-B辐射的响应[J].西北植物学报,2010,30(12):2472-2478.
[45] Johnson G N,Scholes J D,Horton P,et al.Relationships between carotenoid composition and growth habit in british plant species[J].Plant,Cell & Environment,2006,16(6):681-686.
[46] Thayer S S,Björkman O.Leaf xanthophyll content and composition in sun and shade determined by hplc[J].Photosynthesis Research,1990,23(3):331-343.
[47] 孙小玲,许岳飞,马鲁沂,等.植株叶片的光合色素构成对遮阴的响应[J].植物生态学报,2010,34(8):989-999.
[48] 李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26(2):266-275.
[49] 李磊,李向义,林丽莎,等.两种生境条件下6种牧草叶绿素含量及荧光参数的比较[J].植物生态学报,2011,35(6):672-680.
[50] 王荣,胡海清.东北地区5种阔叶树苗木对火烧的生理响应[J].生态学报,2012,32(8):2303-2310.
[51] 杨渺,毛凯,苟文龙,等.遮荫胁迫对叶绿素含量的影响[J].四川草原,2004,(3):20-22.
[52] Tóth S Z,Schansker G,Garab G,et al.Photosynthetic electron transport activity in heat-treated barley leaves:the role of internal alternative electron donors to photosystem Ⅱ[J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,(4):295-305.
[53] 周志彬,张元明,Liliya Dimeyeva.原生地和入侵地旱雀麦(Bromus tectorum)幼苗生理特性比较[J].中国沙漠,2013,33(3):751-757.
[54] Strasser R J,Srivastava A.Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J].Photochemistry and Photobiology,2008,61(1):32-42.
[55] Costa E S,Bressan-Smith R,Oliveira J G D,et al.Photochemical efficiency in bean plants (Phaseolus vulgaris L.and Vigna unguiculata L.Walp) during recovery from high temperature stress[J].Brazilian Journal of Plant Physiology,2002,14(2):105-110.
[56] Krause G.Heinrich,Weis E.Chlorophy ll fluorescence as a tool in plant physiology[J].Photosynthesis Research,1984,5(2):139-157.
[57] 薛伟,李向义,林丽莎,等.短时间热胁迫对疏叶骆驼刺光系统Ⅱ,Rubisco活性和活性氧化剂的影响[J].植物生态学报,2011,35(4):441-451.
[58] 陈凤丽,靳正忠,李生宇,等.高温对花花柴(Karelinia caspica)光系统Ⅱ的影响[J].中国沙漠,2013,33(5):1371-1376.
[59] 张谧,王慧娟,于长青.超旱生植物沙冬青高温胁迫下的快速叶绿素荧光动力学特征[J].生态环境学报,2009,18(6):2272-2277.
[60] Havaux M.Short-term responses of photosystem to heat stress[J].Photosynthesis Research,1996,47(1):85-97.
No Suggested Reading articles found!