Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2014, Vol. 34 Issue (2): 419-425    DOI: 10.7522/j.issn.1000-694X.2013.00333
    
Responses of Leaf Stomatal Conductance and Gas Exchange of Haloxylon ammodendron to Typical Precipitation Event in the Hexi Corridor
Yang Qiyue1,2, Zhao Wenzhi1
1. Linze Inland River Basin Research Station/Key Laboratory of Inland River Ecohydrology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (2307KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  C4 plants have strong ability to use limited precipitation in desert environment due to higher water use efficiency, but it is not understanding of stomatal behavior and gas exchange response to precipitation thoroughly. Here the responses of leaf stomatal conductance (Gs) and gas exchange (Pn) of 6-7 year-old Haloxylon ammodendron in desert-sand to seven rainfall treatments (±30%, ±20%, ±10%, CK) which were applied by rainfall manipulative experiments were evaluated. The results showed that the supply of 6-12 mm rainfalls to soil moisture concentrated within 50 cm soil depths. Gs and Pn increased by 9.17% and 4.17% with the increase of precipitation by 10%, respectively. Gs and Pn showed a trend of unimodality which increased to a peak value at 1d after precipitation and then decreases. Both were correlated significantly to Soil moisture content (SVWC), Air relative humidity (RH) and Vapor pressure deficit (VPD). Leaf gas exchange was mainly affected by stomatal factors when predawn leaf water potential of H. ammodendron between -2.08 MPa and -2.74 MPa after precipitation, while by non- stomatal factors when predawn leaf water potential dropped to below -3.16 MPa.
Key words:  Hexi Corridor      Haloxylon ammodendron      C4 plants      stomatal conductance      net photosynthetic rate     
Received:  13 November 2013      Published:  20 March 2014
ZTFLH:  Q945.79  
Corresponding Authors:  赵文智(Email:zhaowzh@lzb.ac.cn)     E-mail:  zhaowzh@lzb.ac.cn
Articles by authors
Yang Qiyue
Zhao Wenzhi

Cite this article: 

Yang Qiyue, Zhao Wenzhi. Responses of Leaf Stomatal Conductance and Gas Exchange of Haloxylon ammodendron to Typical Precipitation Event in the Hexi Corridor. JOURNAL OF DESERT RESEARCH, 2014, 34(2): 419-425.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00333     OR     http://www.desert.ac.cn/EN/Y2014/V34/I2/419

[1] 刘冰,李守波. 黑河流域荒漠区降水格局及其脉动特征[J].生态学报,2010,30(19):5194-5199.
[2] 刘洪兰,白虎志,张俊国.河西走廊中部近53年降水变化及未来趋势预测[J].干旱区研究,2011,28:146-150.
[3] 陈拓,冯虎元,徐世建,等.荒漠植物叶片碳同位素组成及其水分利用效率[J].中国沙漠,2002,22(3):87-90.
[4] Zou T,Li Y,Xu H,et al.Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils[J].Ecological Research,2010,25(1):185-194.
[5] Ripley B,Frole K and Gilbert M.Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) panicoid grasses[J].Annals of Botany,2010,105(3):493-503.
[6] Winter K.C4 plants of high biomass in arid regions of asia-occurrence of C\-4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR[J].Oecologia,1981,48(1):100-106.
[7] Su P,Cheng G,Yan Q,et al.Photosynthetic regulation of C\-4 desert plant Haloxylon ammodendron under drought stress[J].Plant Growth Regulation,2007,51(2):139-147.
[8] 黄振英,吴鸿,胡正海.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,21(6):521-530.
[9] Su P X,Liu X M,Zhang L X,et al.Comparison of δ13C values and gas exchange of assimilating shoots of desert plants Haloxylon ammodendron and Calligonum mongolicum with other plants[J].Israel Journal of Plant Sciences,2004,52(2):87-97.
[10] 吴玉,郑新军,李彦.不同功能型原生荒漠植物对小降雨的光合响应[J].生态学杂志,2013,32(10):2591-2597.
[11] 李兴,蒋进,宋春武,等.不同坡向梭梭幼苗的生长状况和适应特征[J].中国沙漠,2013,33(1):101-105.
[12] Gao S,Su P,Yan Q,et al.Canopy and leaf gas exchange of Haloxylon ammodendron under different soil moisture regimes[J].Science China Life Sciences,2010,53(6):718-728.
[13] 李彦,许皓.梭梭对降水的响应与适应机制——生理、个体与群落水平碳水平衡的整合研究[J].干旱区地理,2008,31(3):313-323.
[14] 许皓,李彦,邹婷,等.梭梭(Haloxylon ammodendron)生理与个体用水策略对降水改变的响应[J].生态学报,2007,27(12):5019-5028.
[15] Xu H,Li Y.Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J].Plant and Soil,2006,285(1/2):5-17.
[16] 苏培玺,严巧娣.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报,2006,26(1):75-82.
[17] 许皓,李彦.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报,2005,25(7):1309-1316.
[18] 吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究,2005,22(1):79-84.
[19] 苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用,蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
[20] 邹婷,李彦,许皓,等.不同生境梭梭对降水变化的生理响应及形态调节[J].中国沙漠,2011,31(2):428-435.
[21] 王亚婷,唐立松.古尔班通古特沙漠不同生活型植物对小雨量降雨的响应[J].生态学杂志,2009,28(6):1028-1034.
[22] 李小明,名取俊树,大政谦次.人工环境下两种梭梭幼苗光合水分关系的比较研究[J].植物学报,1993,35(10):758-765.
[23] 马全林,王继和,纪永福,等.固沙树种梭梭在不同水分梯度下的光合生理特征[J].西北植物学报,2003,23(12):2120-2126.
[24] Zhao W,Chang X and Zhang Z.Transpiration of a Linze jujube orchard in an arid region of China[J].Hydrological Processes,2009,23(10):1461-1470.
[25] Berry J A,Downton W J S.Environmental regulation of photosynthesis[M].Govindjee,New York,USA:Academic Press,1982:263-343.
[26] 刘元波,高前兆.沙地降雨入渗水分动态[J].中国沙漠,1995,15(2):143-150.
[27] 刘新平,张铜会,赵哈林,等.流动沙丘降雨入渗和再分配过程[J].水利学报,2006,37(2):166-171.
[28] 郭柯,董学军,刘志茂.毛乌素沙地沙丘土壤含水量特点——兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,(3):275-279.
[29] 魏雅芬,郭柯,陈吉泉.降雨格局对库布齐沙漠土壤水分的补充效应[J].植物生态学报,2008,32(6):1346-1355.
[30] Huang Y,Guo Y H.Root dstribution characteristics of Haloxylon ammodendron (Mey.) bunge plantation[J].Acta Agrestia Sinica,2009,17(1):84-87.
[31] Xu G Q,Li Y,Xu H.Seasonal variation in plant hydraulic traits of two co-occurring desert shrubs,Tamarix ramosissima and Haloxylon ammodendron,with different rooting patterns[J].Ecological Research,2011,26(6):1071-1080.
[32] 吕金岭,张希明,吕朝燕,等.准噶尔盆地南缘荒漠区梭梭维持水源初步研究[J].中国沙漠,2013,33(1):110-117.
[33] Rundel P,Nobel P.Structure and function in desert root systems[M]//Plant Root Growth:An Ecological Perspective.Oxford,UK:Blackwell Scientific Publications,1991:349-378.
[34] Zabri A,Burrage S.The effects of vapour pressure deficit (VPD) and enrichment with CO\-2 on water relations,photosynthesis,stomatal conductance and plant growth of sweet pepper (Capsicum annum L.) grown by NFT[C]//II International Symposium on Irrigation of Horticultural Crops,449,1996:561-568.
[35] Küppers M.Water vapour and carbon dioxide exchange of leaves as affected by different environmental conditions[C]//Symposium on Biological Aspects of Energy Saving in Protected Cultivation,229,1987:85-112.
[36] Franco A C,Soyza A G,Virginia R A,et al.Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata[J].Oecologia,1994,97(2):171-178.
[37] Tinoco-Ojanguren C,Pearcy R W.Stomatal dynamics and its importance to carbon gain in two rainforest Piper species.I.VPD effects on the transient stomatal response to lightflecks[J].Oecologia,1993,94(3):388-394.
[38] 唐凤德,武耀祥,韩士杰,等.长白山阔叶红松林叶片气孔导度与环境因子的关系[J].生态学报,2008,28(11):5649-5655.
[39] 赵文智,程国栋.生态水文学——揭示生态格局和生态过程水文学机制的科学[J].冰川冻土,2001,23(4):450-457.
[40] 赵文智,常学礼.樟子松针叶气孔运动与蒸腾强度关系研究[J].中国沙漠,1995,15(3):241-243.
[41] 杨文斌.风成沙丘上梭梭林衰亡的水分特性研究[J].干旱区研究,1991(1):30-34.
[42] 李小明.不同水分条件下两种梭梭蒸腾作用比较[J].干旱区研究,1989,6(1):66-69.
[43] Farquhar G D,Sharkey T D.Stomatal Conductance and Photosynthesis[J].Annual Review of Plant Physiology,1982,33(1):317-345.
No Suggested Reading articles found!