Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2014, Vol. 34 Issue (2): 441-447    DOI: 10.7522/j.issn.1000-694X.2013.00336
    
Responses of Physiological Traits of Salicornia european to NaCl Treatment
Zhang Meiru1,2, Ma Jinbiao1, Yao Yin'an1, Zhang Xuan1,2, Xiao Xinlong1,2
1. Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Uramqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (2012KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Salicornia europaea was treated with different NaCl (0,10,200,500,800 mmol·L-1) for 11 days. The fresh weight (FW), dry weight (DW), ion contents, relative conductivity, total dissolved solids (TDS) content, the main antioxidant enzyme (SOD, POD,CAT) activities, and membrane lipid peroxide (MDA) were measured. Our results showed that the plant FW and DW peaked in 200 mmol·L-1 NaCl treatment, accompanying with lowest values in relative electronic conductivity (EC), MDA and antioxidant enzyme (SOD, POD,CAT) activities, which indicated that this moderate NaCl concentration promote the growth of S. europaea. And the plant growth, FW and DW were reduced by higher or lower than 200 mmol·L-1 NaCl treatment. The high level of NaCl (500 and 800 mmol·L-1) treatments partly damaged plasma membrane and enzyme system, as showed by enhancement of MDA and EC values and by the reduction of antioxidant enzyme (SOD and CAT) activities. On the other hand, Na+ and K+ were mainly accumulated to shoot to adjust osmotic potential under salt stress, and Na+ content was much more than potassium. With increasing salinity, Na+ content increased while K+ content decreased in shoots and roots to regulate cellular ion balance. Hence, sodium may play more important role than potassium in regulating and tolerating salt stress.
Key words:  Salicornia europaea      salt stress      NaCl      ion balance     
Received:  04 February 2013      Published:  20 March 2014
ZTFLH:  Q945.78  
Corresponding Authors:  姚银安(Email:yaoya@ms.xjb.ac.cn)     E-mail:  yaoya@ms.xjb.ac.cn

Cite this article: 

Zhang Meiru, Ma Jinbiao, Yao Yin'an, Zhang Xuan, Xiao Xinlong. Responses of Physiological Traits of Salicornia european to NaCl Treatment. JOURNAL OF DESERT RESEARCH, 2014, 34(2): 441-447.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2013.00336     OR     http://www.desert.ac.cn/EN/Y2014/V34/I2/441

[1] Zhu J K.Plant salt tolerance[J].Trends in Plant Science,2001,6(2): 66-71.
[2] Roxas V P,Lodhi S A,Garrett D K,et al.Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J].Plant and Cell Physiology,2000,41(11):1229-1234.
[3] Flowers T J,Colmer T D.Salinity tolerance in halophytes[J].New Phytologist,2008,179(4):945-963.
[4] Maathuis F J M,Amtmann A.K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios[J].Annals of Botany,1999,84(2):123-133.
[5] Allen R D,Webb R P,Schake S A.Use of transgenic plants to study antioxidant defenses[J].Free Radical Biology and Medicine,1997,23(3):473-479.
[6] Qi Y,Liu W,Qiu L,et al.Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis[J].Russian Journal of Plant Physiology,2010,57(2):233-240.
[7] Mian A,Oomen R J F J,Isayenkov S,et al.Overexpression of an Na+ and K+ permeable HKT transporter in barley improves salt tolerance[J].The Plant Journal,2011,68(3):468-479.
[8] Quintero J M,María F J,Benlloch M.Na+ accumulation in shoot is related to water transport in K+-starved sunflower plants but not in plants with a normal K+ status[J].Journal of Plant Physiology,2007,164(1):60-67.
[9] 叶妙水,钟克亚,张桂和,等.盐生经济作物北美海蓬子与盐渍地生态环境改造[J].草业科学,2006,23(6):6-14.
[10] 李银芳,夏训诚,刘兆松,等.盐角草种子的油脂成分与营养评价[J].干旱区研究,2007,24(1):34-36.
[11] Glenn E P,Coates W E,Riley J J,et al.Salicornia bigelovii Torr.:a seawater-irrigated forage for goats[J].Animal Feed Science and Technology,1992,40(1):21-30.
[12] 王宝山,赵可夫.小麦叶片中 Na,K提取方法的比较[J].植物生理学通讯,1995,31(1):50-52.
[13] 陈爱葵,韩瑞宏,李东洋,等.植物叶片相对电导率测定方法比较研究[J].广东教育学院学报,2010,30(5):88-91.
[14] 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000:68-74.
[15] Flowers T J,Colmer T D.Salinity tolerance in halophytes[J].New Phytologist,2008,179(4):945-963.
[16] 陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002:64-66.
[17] 张岳平,陈光宇,罗绍春,等.芦笋重要真菌病害研究进展[J].中国农学通报,2012,28(31):114-119.
[18] 马利平,郝变青,秦曙,等.芦笋茎枯病的生物防治及机理研究[J].中国生态农业学报,2009,17(6):1229-1233.
[19] 周瑞莲,王海鸥,赵哈林.不同类型沙地植物保护酶系统对干旱、高温胁迫的响应[J].中国沙漠,1999,19(1):49-54.
[20] Bowler C,Montagu M,Inze D.Superoxide dismutase and stress tolerance[J].Annual Review of Plant Biology,1992,43(1):83-116.
[21] Van Camp W,Capiau K,Van Montagu M,et al.Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts[J].Plant Physiology,1996,112(4):1703-1714.
[22] Meloni D A,Oliva M A,Martinez C A,et al.Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress[J].Environmental and Experimental Botany,2003,49(1):69-76.
[23] 张继澍.植物生理学[M].北京:高等教育出版社,2006:431.
[24] 李合生.现代植物生理学[M].北京:高等教育出版社,2002:324-325.
[25] Janero D R.Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury[J].Free Radical Biology and Medicine,1990,9(6):515-540.
[26] Draper H,Hadley M.Malondialdehyde determination as index of lipid peroxidation[J].Methods in Enzymology,1990,186(2):421-431.
[27] 田魏龙,蒋志荣.不同沙棘品种对干旱胁迫的生理生化响应[J].中国沙漠,2011,31(5):1215-1220.
[28] 马颜军,马瑞,曹致中,等.PEG胁迫对胡枝子幼苗叶片生理特性的影响[J].中国沙漠,2012,32(6):1662-1668.
[29] Ushakova S,Kovaleva N,Gribovskaya I,et al.Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS[J].Advances in Space Research,2005,36(7):1349-1353.
[30] Hajibagheri M,Flowers T.X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum[J].Planta,1989,177(1):131-134.
[31] 聂玲玲,冯娟娟,吕素莲,等.真盐生植物盐角草对不同氮形态的响应[J].生态学报,2012,32(18):5703-5712.
[32] 薛 焱,王迎春,王同智.盐胁迫对濒危植物长叶红砂抗氧化系统的影响[J].中国沙漠,2012,32(6):1669-1673.
[33] Lv S,Jiang P,Chen X,et al.Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea[J].Plant Physiology and Biochemistry,2011,51:47-52.
[34] Munns R,Tester M.Mechanisms of salinity tolerance[J].Annual Review of Phytopathology,2008,59:651-681.
[35] Flowers T,Troke P,Yeo A.The mechanism of salt tolerance in halophytes[J].Annual Review of Plant Physiology,1977,28(1):89-121.
[36] Chen Z,Pottosin II,Cuin TA,et al.Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley[J].Plant Physiology,2007,145(4):1714-1725.
[37] Rus A,Estan M,Gisbert C,et al.Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress[J].Plant,Cell & Environment,2001,24(8):875-880.
[38] 周瑞莲,赵彦宏,赵哈林,等.钠盐对冬小麦抗旱性增效作用调控机理的生理生态学分析[J].中国沙漠,2012,32(6):784-792.
[39] Aghaleh M,Niknam V,Ebrahimzadeh H,et al.Effect of salt stress on physiological and antioxidative responses in two species of Salicornia (S.persica and S.europaea)[J].Acta Physiologiae Plantarum,2010,33(4):1261-1270.
[40] Alem n F,Nieves-Cordones M,Mart nez V,et al.Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana[J].Environmental and Experimental Botany,2009,65(2):263-269.
[41] 王丽燕,赵可夫.NaCl 胁迫对海蓬子(Salicornia bigelovii Torr.) 离子区室化,光合作用和生长的影响[J].植物生理与分子生物学学报,2004,30(001):94-98.
[42] Maathuis F J M,Verlin D,Smith F A,et al.The physiological relevance of Na+-coupled K+-transport[J].Plant Physiology,1996,112(4):1609-1616.
[43] Lv S,Nie L,Fan P,et al.Sodium plays a more important role than potassium and chloride in growth of Salicornia europaea[J].Acta Physiologiae Plantarum,2012,34(2):503-513.
No Suggested Reading articles found!