Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2015, Vol. 35 Issue (3): 674-682    DOI: 10.7522/j.issn.1000-694X.2014.00035
    
Soil Moisture Dynamics of Artemisia ordosica Communities in the Mu Us Sandy Land
Yu Xiaona, Li Engui, Huang Yongmei, Li Xiaoyan
College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China
Download:  PDF (2803KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Soil moisture content of the 5, 15, 30, 50 and 70 cm soil layers was continuously measured at 10-min intervals for four sites: shifting dune (I), Artemisia ordosica community in semi-fixed dune (II), A. ordosica community with biological soil crusts (III), and A. ordosica + Stipa bungeana community (IV), in the Mu Us Sandy land of Inner Mongolia, to determine soil moisture dynamics during the growing season under different land coverage. The results indicated that: (1) Soil moisture storage capacity was largest for all sites in autumn, while the capacity of the A. ordosica+ Stipa bungeana community was the largest of all the sites, at least 30 mm larger than that of the other sites. (2) Influenced by soil evaporation and lacking the replenishment of small rainfall in spring, soil moisture content of the 20-60 cm soil layer in the shifting dune was only 4% and showed substantial variation during the whole growing season, while the soil moisture contents of the 0-20 cm and 60-80 cm layers were much more stable. Soil moisture content of the 0-60 cm soil layer in the A. ordosica community in semi-fixed dune was about 6% for the majority of the study period and was unimodal. Soil moisture content of the 60-80 cm layer was bimodal, showing minimum moisture content in spring and replenishment of moisture content in summer and autumn. Average soil moisture content of the 0-10 cm layer in A. ordosica community with biological soil crusts was more than for the 10-20 cm soil layer. With the influence of the biological soil crusts, soil moisture content of the 0-10 cm layer was bimodal, while the moisture content in the 10-60 cm layer was stable and unimodal. Soil moisture content of the 60-80 cm soil layer was bimodal and lowest in spring. Water holding capacity of A. ordosica+S. bungeana community was significantly increased compared with the other sites. Soil moisture content of the 0-60 cm soil layer was 12% to 14% for most of the summer and autumn, and showed a distinct bimodal pattern during the growing season. Because of a lack of adequate replenishment from precipitation, soil moisture content of the 60-80 cm soil layer was unimodal and steady at about 4%. (3) Soil moisture content after individual precipitation was different by about 30 mm in sites of different land coverage. Precipitation could influence soil water down to 70, 50, 30, and 40 cm for shifting dune, A. ordosica community in semi-fixed dune, A. ordosica community with biological crusts, and A. ordosica+S. bungeana community, respectively. Extreme precipitation could rapidly affect the soil layer down to 70 cm in all sites.

Key words:  Artemisia ordosica community      soil moisture content      seasonal dynamics      vertical dynamics     
Received:  27 November 2013      Published:  20 May 2015
ZTFLH:  S812.2  

Cite this article: 

Yu Xiaona, Li Engui, Huang Yongmei, Li Xiaoyan. Soil Moisture Dynamics of Artemisia ordosica Communities in the Mu Us Sandy Land. JOURNAL OF DESERT RESEARCH, 2015, 35(3): 674-682.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2014.00035     OR     http://www.desert.ac.cn/EN/Y2015/V35/I3/674

[1] Veste M, Yair A, Breckle S W, et al. Ecohydrology of biological soil crusts in arid sand dunes-integration from the micro-scale to the landscape[J].EGU Gereral Assembly Conference Abstracts, 2012, 14:4142.
[2] Wang X P, Zhang Y F, Wang Z N, et al.Influence of shrub canopy morphology and rainfall characteristics on stemflow within a revegetated sand dune in the Tengger Desert, NW China[J].Hydrological Processes, 2013, 27(10):1501-1509.
[3] Schwinning S, Starr B I, Ehleringer J R.Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part Ⅰ:effects on soil water and plant water uptake[J].Journal of Arid Environments, 2005, 60:547-566.
[4] Berndtsson R, Nodomi K, Yasuda H, et al.Soil water and temperature patterns in an arid desert dune sand[J].Journal of Hydrology, 1996, 185:221-240.
[5] Li X R, Zhang Z S, Huang L, et al.Review of the eco-hydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China[J].Chinese Science Bulletin, 2013, 58(13):1483-1496.
[6] 段争虎.土壤水研究在流域生态-水文过程中的作用、现状与方向[J].地球科学进展, 2008, 23(7):682-684.
[7] 王志, 王蕾, 刘连友, 等.毛乌素沙地南缘沙丘水分的时空分布特征[J].干旱区研究, 2007, 24(1):61-65.
[8] 崔利强, 吴波, 杨文斌, 等.毛乌素沙地东南缘不同植被盖度下土壤水分特征分析[J].干旱区资源与环境, 2010, 24(2):177-182.
[9] 张新时.毛乌素沙地的生态背景及其草地建设的原则与优化模式[J].植物生态学报, 1994, 18(1):1-26.
[10] 郭柯, 董学军, 刘志茂.毛乌素沙地沙丘土壤含水量特点--兼顾老固定沙地上油蒿衰退原因[J].植物生态学报, 2000, 24(3):275-279.
[11] 张军, 黄永梅, 焦会景, 等.毛乌素沙地油蒿群落演替的生理生态学机制[J].中国沙漠, 2007, 27(6):977-983.
[12] 秦大河, 丁一汇, 苏纪兰, 等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展, 2005, 1(1):4-9.
[13] Xu Y L, Zhang Y, Lin E, et al.Analyses on the climate change responses over China under SRES B2 scenario using PRECIS[J].Chinese Science Bulletin, 2006, 51(18):2260-2267.
[14] 北京大学地理学系, 等.毛乌素沙区自然条件及其改良利用[M].北京:科学出版社, 1983.
[15] 牛海, 李和平, 赵萌莉, 等.毛乌素沙地不同水分梯度根系垂直分布与土壤水分关系的研究[J].干旱区资源与环境, 2008, 22(2):1761-1770.
[16] 王庆锁, 李博.鄂尔多斯沙地油蒿群落生物量初步研究[J].植物生态学报, 1994, 18(4):347-353.
[17] 张志山, 张景光, 刘立超, 等.沙漠人工植被降水截留特征研究[J].冰川冻土, 2005, 27(5):761-766.
[18] Gómez-Plaza A, Martínez-Mena M, Albaladejo J, et al.Factors regulating spatial distribution of soil water content in small semiarid catchments[J].Journal of Hydrology, 2001, 253:211-226.
[19] Xiao B, Zhao Y G, Shao M A.Characteristics and numeric simulation of soil evaporation in biological soil crusts[J].Journal of Arid Environments, 2010, 74:121-130.
[20] 李新荣.荒漠生物土壤结皮生态与水文学研究[M].北京:高等教育出版社, 2012.
[21] Chamizo S, Cantón Y, Lázaro R, et al.The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures[J].Journal of Hydrology, 2013, 489:74-84.
[22] 刘鹄, 赵文智, 何志斌, 等.祁连山浅山区不同植被类型土壤水分时间异质性[J].生态学报, 2008, 28(5):2389-2394.
[23] Yao S X, Zhao C C, Zhang T H, et al.Response of the soil water content of mobile dunes to precipitation patterns in Inner Mongolia, northern China[J].Journal of Arid Environments, 2013, 97:92-98.
[24] Zhang Z H, Li X Y, Jiang Z Y, et al.Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China[J].Plant and Soil, 2013:1-18.DOI:10.1007/s11104-01301772-3.
[25] 李柳, 李小雁, 蒋志云, 等.毛乌素沙地油蒿(Artemisia ordosica)灌丛穿透雨量特征及影响因素[J].中国沙漠, 2014, 34(4):1031-1036.
[26] 刘冰, 赵文智, 常学向, 等.黑河流域荒漠区土壤水分对降水脉动响应[J].中国沙漠, 2011, 31(3):716-722.
[27] Martinez-Meza E, Whitford W G.Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs[J].Journal of Arid Environments, 1996, 32:271-287.
No Suggested Reading articles found!