Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2015, Vol. 35 Issue (6): 1505-1511    DOI: 10.7522/j.issn.1000-694X.2014.00135
    
Characteristics of Foliar Stable Carbon Isotope Composition of Populus euphratica for Different Niche in the Lower Reach of the Heihe River
Yuan Yapeng, Zhao Yang, Zhao Chuanyan, Li Wenjuan
State Key Laboratory of Grassland Agriculture Ecosystem, Lanzhou University, Lanzhou 730000, China
Download:  PDF (3165KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Foliar stable carbon isotope composition can response the effect of water stress on plant growth and is thus an important demonstrator to the niche where plant grows, especially in arid environments. Therefore, it has become key parameter to be used among researches of relationship between plant growth state and the environmental stress. This study selects Populus euphratica growing in the lower reach of the Heihe River as an object. The niche is poor for P. euphratica. It suffers from drought stress in the form of water and salt stress in the studied area. We analyze the state of drought stress by foliar stable carbon isotope composition(δ13C). The results shows that δ13C ranges from-25.51‰ to-30.21‰ with a mean value of-28.28‰. Comparing δ13C with that in other niche where no water stress happens, we found that δ13C value in our study is higher. δ13C increases with the increase of drought stress. It has significant relative to the ratio of died branches to total branches, but no significant relative to the population density. From the results, we can draw conclusion that δ13C can dictate the state of water stress for P. euphratica. The ratio of died branches to total branches can be an important δ13C proxy to indicate the niche of P. euphratica.
Key words:  Heihe River      Populus euphratica      stable carbon isotope composition      growth state      ratio of died branches to total branches     
Received:  05 June 2014      Published:  20 November 2015
ZTFLH:  Q948.11  

Cite this article: 

Yuan Yapeng, Zhao Yang, Zhao Chuanyan, Li Wenjuan. Characteristics of Foliar Stable Carbon Isotope Composition of Populus euphratica for Different Niche in the Lower Reach of the Heihe River. JOURNAL OF DESERT RESEARCH, 2015, 35(6): 1505-1511.

URL: 

http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2014.00135     OR     http://www.desert.ac.cn/EN/Y2015/V35/I6/1505

[1] 马剑英,孙惠玲,夏敦胜,等.塔里木盆地胡杨两种形态叶片碳同位素特征研究[J].兰州大学学报(自然科学版),2007,43(4):51-55.
[2] 马剑英,陈发虎,夏敦胜,等.荒漠植物红砂稳定碳同位素组成的空间分布特征[J].第四纪研究,2006,26(6):947-954.
[3] 文陇英,陈拓,张满效,等.不同生境下祁连圆柏叶片色素和稳定碳同位素组成的变化[J].冰川冻土,2010,32(4):823-828.
[4] Farquhar G D,Oleary M H,Berry J A.On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves[J].Australian Journal of Plant Physiology,1982,9:121-137.
[5] 郑淑霞,上官周平.近一世纪黄土高原区植物气孔密度变化规律[J].生态学报,2004,24(11):2457-2464.
[6] 郑淑霞,上官周平.辽东栎叶片气孔密度及δ 13C值的时空变异[J].林业科学,2005,41(2):30-36.
[7] 刘照斌,宁俊,吕建洲.S3307处理对草地早熟禾叶片气孔密度和开度的影响[J].沈阳农业大学学报,2009,40(4):488-490.
[8] 逯永满,姜彦成.中国海罂粟属(Glaucium L.)叶片特征及其抗旱性[J].新疆农业科学,2010,47(10):2063-2067.
[9] 张立荣,牛海山,汪诗平,等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报,2010,30(24):6961-6969.
[10] Zhang L,Dong Z C,Huang X L.Modeling on relation between major plants growth and groundwater depth in arid area[J].Journal of Desert Research,2004,24(1):110-113.
[11] Mart nez J P,Silva H,Ledent J F,et al.Effect of drought stress on the osmotic adjustment,cell wall elasticity and cell volume of six cultivars of common beans(Phaseolus vulgaris L.)[J].European Journal of Agronomy,2007,26(1):30-38.
[12] 杨树德,郑文菊,陈国仓,等.胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异[J].西北植物学报,2005,25(1):14-21.
[13] 曹生奎,冯起,司建华,等.不同立地条件下胡杨叶片稳定碳同位素组成及水分利用效率的变化[J].冰川冻土,2012,34(1):155-160.
[14] 张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠,2004,24(1):110-113.
[15] 杨丽,张秋良,常金宝.胡杨树根系空间分布特性[J].内蒙古农业大学学报,2006,27(1):15-17.
[16] 赵传燕,李守波,冯兆东,等.黑河下游地下水波动带地下水位动态变化研究[J].中国沙漠,2009,29(2):365-369.
[17] 司建华,冯起,张小由,等.黑河下游分水后的植被变化初步研究[J].西北植物学报,2005,25(4):631-640.
[18] 赵传燕,李守波,贾艳红,等.黑河下游地下水波动带地下水与植被动态耦合模拟[J].应用生态学报,2008,19(12):2687-2692.
[19] 陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,26(5):549-560.
[20] 曹生奎,冯起,司建华,等.极端干旱区胡杨生长季水分利用效率变化特征研究[J].中国沙漠,2012,32(3):724-729.
[21] 刘光琇,陈拓,安黎哲,等.青藏高原北部植物叶片碳同位素组成特征的环境意义[J].地球科学进展,2004,19(5):749-753.
[22] O'Leary M H.Carbon isotopes in Photosynthesis(fractionation techniques may reveal new aspects of carbon dynamics in plants)[J].Bioscience,1988,38:328-336.
[23] 郑淑霞,上官周平.辽东栎叶片气孔密度及δ 13C值的时空变异[J].林业科学,2005,41(2):30-36.
[24] 陈英华,胡俊,李裕红,等.碳稳定同位素技术在植物水分胁迫研究中的应用[J].生态学报,2004,24(5):1027-1033.
[25] 苏波,韩兴国,李凌浩,等.中国东北样带草原区植物δ 13C值及水分利用效率对环境梯度的响应[J].植物生态学报,2000,24(6):648-655.
[26] 陈世苹,白永飞,韩兴国,等.沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化[J].植物生态学报,2004,28(4):515-522.
[27] 刘世鹏,刘济明,曹娟云,等.干旱胁迫下枣树叶片表皮气孔分布及特征分析[J].安徽农业科学,2006,34(7):1315-1318.
No Suggested Reading articles found!