Journal of Desert Research ›› 2021, Vol. 41 ›› Issue (2): 212-220.DOI: 10.7522/j.issn.1000-694X.2020.00131
Previous Articles Next Articles
Liyue Cao1(), Yulin Li2(
), Jin Zhan2,3, Lina Shi2
Received:
2020-12-23
Revised:
2020-12-30
Online:
2021-03-20
Published:
2021-03-26
Contact:
Yulin Li
CLC Number:
Liyue Cao, Yulin Li, Jin Zhan, Lina Shi. Effects of tillage on distribution and stability of soil aggregates in Horqin Sandy Land[J]. Journal of Desert Research, 2021, 41(2): 212-220.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2020.00131
土层 深度 /cm | 开垦 年限 /a | 团聚体含量/% | |||||||
---|---|---|---|---|---|---|---|---|---|
>1 mm | 1—0.5 mm | 0.5—0.25 mm | 小于0.25 mm | ||||||
开垦 | 对照 | 开垦 | 对照 | 开垦 | 对照 | 开垦 | 对照 | ||
0—10 | 0—5 | 22.23±0.02Ha | 23.26±0.19b | 3.92±0.02Ca | 1.22±0.01b | 11.03±0.02Aa | 3.76±0.01b | 62.83±0.04Aa | 71.77±0.19b |
5—10 | 29.58±0.00Fa | 27.19±0.09b | 1.53±0.00Ga | 1.38±0.01b | 8.05±0.02Ca | 3.80±0.02b | 60.84±0.02Ba | 67.63±0.08b | |
10—15 | 28.21±0.16Ga | 18.40±0.12b | 3.88±0.00Da | 2.03±0.01b | 8.04±0.02Ca | 6.58±0.04b | 59.88±0.16Ca | 73.00±0.12b | |
15—20 | 55.15±0.03Aa | 45.76±0.16b | 2.24±0.01Fa | 1.27±0.01b | 5.78±0.02Da | 2.65±0.01b | 36.83±0.01Ha | 50.32±0.16b | |
20—25 | 46.67±0.01Ba | 36.12±0.07b | 2.83±0.01Ea | 2.15±0.00b | 5.69±0.01Ea | 4.41±0.02b | 44.81±0.02Fa | 57.32±0.05b | |
25—30 | 30.59±0.03Ea | 22.53±0.17b | 4.06±0.01Ba | 2.59±0.01b | 8.95±0.00Ba | 5.98±0.03b | 56.41±0.04Da | 68.90±0.15b | |
30—35 | 39.72±0.15Da | 30.99±0.08b | 6.72±0.01Aa | 3.30±0.01b | 2.83±0.00Fa | 4.33±0.02b | 50.73±0.15Ea | 61.39±0.10b | |
35—40 | 47.95±0.01Ca | 33.40±0.19b | 3.91±0.01Ca | 2.31±0.01b | 5.70±0.01Ea | 4.31±0.02b | 42.44±0.02Ga | 59.98±0.18b | |
10—20 | 0—5 | 32.35±0.02Ca | 11.06±0.11b | 2.13±0.01Ea | 1.19±0.00b | 7.34±0.01Ea | 7.62±0.04b | 58.18±0.02Ca | 80.13±0.15b |
5—10 | 32.10±0.03Da | 22.81±0.10b | 1.76±0.01Ga | 1.08±0.01b | 9.08±0.02Ba | 4.19±0.04b | 57.06±0.04Ea | 71.92±0.09b | |
10—15 | 31.97±0.15Ea | 6.16±0.06b | 2.56±0.01Da | 1.74±0.01b | 8.78±0.00Da | 6.32±0.03b | 56.68±0.15Fa | 85.78±0.05b | |
15—20 | 59.69±0.04Aa | 23.71±0.11b | 1.26±0.00Ha | 1.68±0.00b | 4.62±0.00Ha | 5.03±0.02b | 34.43±0.03Ha | 69.58±0.10b | |
20—25 | 29.61±0.07Fa | 21.65±0.16b | 4.21±0.02Aa | 2.10±0.01b | 7.27±0.03Fa | 4.56±0.02b | 58.91±0.08Ba | 71.70±0.15b | |
25—30 | 22.48±0.09Ga | 14.39±0.18b | 2.95±0.00Ca | 2.14±0.01b | 9.70±0.03Aa | 7.67±0.05b | 64.88±0.09Aa | 75.80±0.15b | |
30—35 | 29.52±0.05Fa | 25.84±0.01b | 3.41±0.01Ba | 2.42±0.00b | 9.02±0.01Ca | 4.09±0.01b | 58.05±0.04Da | 67.65±0.02b | |
35—40 | 42.74±0.02Ba | 30.91±0.16b | 1.98±0.00Fa | 1.30±0.01b | 5.35±0.01Ga | 4.26±0.02b | 49.93±0.01Ga | 63.52±0.18b | |
20—40 | 0—5 | 2.02±0.00Ha | 3.20±0.04b | 5.96±0.00Ba | 1.58±0.00b | 6.46±0.01Ha | 7.03±0.00b | 85.56±0.01Aa | 88.19±0.04b |
5—10 | 9.75±0.01Ga | 10.91±0.13b | 3.10±0.02Ea | 1.52±0.02b | 8.89±0.01Da | 6.90±0.03b | 78.25±0.04Ba | 80.68±0.11b | |
10—15 | 10.57±0.08Fa | 1.72±0.02b | 2.43±0.01Ga | 1.72±0.01b | 11.96±0.01Ba | 4.89±0.02b | 75.04±0.09Ca | 91.67±0.04b | |
15—20 | 28.42±0.02Ba | 7.58±0.05b | 13.19±0.02Aa | 3.00±0.01b | 13.16±0.02Aa | 5.81±0.01b | 45.23±0.03Ha | 83.61±0.05b | |
20—25 | 25.25±0.01Ca | 9.09±0.10b | 3.65±0.00Ca | 2.33±0.00b | 11.05±0.02Ca | 5.09±0.01b | 60.05±0.01Fa | 83.49±0.11b | |
25—30 | 19.14±0.00Da | 5.70±0.04b | 3.10±0.00Ea | 2.73±0.02b | 6.49±0.00Ga | 6.87±0.03b | 71.27±0.00Da | 84.70±0.05b | |
30—35 | 19.05±0.01Ea | 15.70±0.14b | 3.38±0.01Da | 2.64±0.01b | 7.61±0.02Fa | 4.91±0.02b | 69.96±0.03Ea | 76.75±0.14b | |
35—40 | 38.34±0.01Aa | 18.73±0.10b | 2.78±0.00Fa | 1.98±0.01b | 7.88±0.00Ea | 5.10±0.02b | 51.00±0.01Ga | 74.19±0.11b |
Table 1 Distribution characteristics of soil water-stable aggregates under different tillage period
土层 深度 /cm | 开垦 年限 /a | 团聚体含量/% | |||||||
---|---|---|---|---|---|---|---|---|---|
>1 mm | 1—0.5 mm | 0.5—0.25 mm | 小于0.25 mm | ||||||
开垦 | 对照 | 开垦 | 对照 | 开垦 | 对照 | 开垦 | 对照 | ||
0—10 | 0—5 | 22.23±0.02Ha | 23.26±0.19b | 3.92±0.02Ca | 1.22±0.01b | 11.03±0.02Aa | 3.76±0.01b | 62.83±0.04Aa | 71.77±0.19b |
5—10 | 29.58±0.00Fa | 27.19±0.09b | 1.53±0.00Ga | 1.38±0.01b | 8.05±0.02Ca | 3.80±0.02b | 60.84±0.02Ba | 67.63±0.08b | |
10—15 | 28.21±0.16Ga | 18.40±0.12b | 3.88±0.00Da | 2.03±0.01b | 8.04±0.02Ca | 6.58±0.04b | 59.88±0.16Ca | 73.00±0.12b | |
15—20 | 55.15±0.03Aa | 45.76±0.16b | 2.24±0.01Fa | 1.27±0.01b | 5.78±0.02Da | 2.65±0.01b | 36.83±0.01Ha | 50.32±0.16b | |
20—25 | 46.67±0.01Ba | 36.12±0.07b | 2.83±0.01Ea | 2.15±0.00b | 5.69±0.01Ea | 4.41±0.02b | 44.81±0.02Fa | 57.32±0.05b | |
25—30 | 30.59±0.03Ea | 22.53±0.17b | 4.06±0.01Ba | 2.59±0.01b | 8.95±0.00Ba | 5.98±0.03b | 56.41±0.04Da | 68.90±0.15b | |
30—35 | 39.72±0.15Da | 30.99±0.08b | 6.72±0.01Aa | 3.30±0.01b | 2.83±0.00Fa | 4.33±0.02b | 50.73±0.15Ea | 61.39±0.10b | |
35—40 | 47.95±0.01Ca | 33.40±0.19b | 3.91±0.01Ca | 2.31±0.01b | 5.70±0.01Ea | 4.31±0.02b | 42.44±0.02Ga | 59.98±0.18b | |
10—20 | 0—5 | 32.35±0.02Ca | 11.06±0.11b | 2.13±0.01Ea | 1.19±0.00b | 7.34±0.01Ea | 7.62±0.04b | 58.18±0.02Ca | 80.13±0.15b |
5—10 | 32.10±0.03Da | 22.81±0.10b | 1.76±0.01Ga | 1.08±0.01b | 9.08±0.02Ba | 4.19±0.04b | 57.06±0.04Ea | 71.92±0.09b | |
10—15 | 31.97±0.15Ea | 6.16±0.06b | 2.56±0.01Da | 1.74±0.01b | 8.78±0.00Da | 6.32±0.03b | 56.68±0.15Fa | 85.78±0.05b | |
15—20 | 59.69±0.04Aa | 23.71±0.11b | 1.26±0.00Ha | 1.68±0.00b | 4.62±0.00Ha | 5.03±0.02b | 34.43±0.03Ha | 69.58±0.10b | |
20—25 | 29.61±0.07Fa | 21.65±0.16b | 4.21±0.02Aa | 2.10±0.01b | 7.27±0.03Fa | 4.56±0.02b | 58.91±0.08Ba | 71.70±0.15b | |
25—30 | 22.48±0.09Ga | 14.39±0.18b | 2.95±0.00Ca | 2.14±0.01b | 9.70±0.03Aa | 7.67±0.05b | 64.88±0.09Aa | 75.80±0.15b | |
30—35 | 29.52±0.05Fa | 25.84±0.01b | 3.41±0.01Ba | 2.42±0.00b | 9.02±0.01Ca | 4.09±0.01b | 58.05±0.04Da | 67.65±0.02b | |
35—40 | 42.74±0.02Ba | 30.91±0.16b | 1.98±0.00Fa | 1.30±0.01b | 5.35±0.01Ga | 4.26±0.02b | 49.93±0.01Ga | 63.52±0.18b | |
20—40 | 0—5 | 2.02±0.00Ha | 3.20±0.04b | 5.96±0.00Ba | 1.58±0.00b | 6.46±0.01Ha | 7.03±0.00b | 85.56±0.01Aa | 88.19±0.04b |
5—10 | 9.75±0.01Ga | 10.91±0.13b | 3.10±0.02Ea | 1.52±0.02b | 8.89±0.01Da | 6.90±0.03b | 78.25±0.04Ba | 80.68±0.11b | |
10—15 | 10.57±0.08Fa | 1.72±0.02b | 2.43±0.01Ga | 1.72±0.01b | 11.96±0.01Ba | 4.89±0.02b | 75.04±0.09Ca | 91.67±0.04b | |
15—20 | 28.42±0.02Ba | 7.58±0.05b | 13.19±0.02Aa | 3.00±0.01b | 13.16±0.02Aa | 5.81±0.01b | 45.23±0.03Ha | 83.61±0.05b | |
20—25 | 25.25±0.01Ca | 9.09±0.10b | 3.65±0.00Ca | 2.33±0.00b | 11.05±0.02Ca | 5.09±0.01b | 60.05±0.01Fa | 83.49±0.11b | |
25—30 | 19.14±0.00Da | 5.70±0.04b | 3.10±0.00Ea | 2.73±0.02b | 6.49±0.00Ga | 6.87±0.03b | 71.27±0.00Da | 84.70±0.05b | |
30—35 | 19.05±0.01Ea | 15.70±0.14b | 3.38±0.01Da | 2.64±0.01b | 7.61±0.02Fa | 4.91±0.02b | 69.96±0.03Ea | 76.75±0.14b | |
35—40 | 38.34±0.01Aa | 18.73±0.10b | 2.78±0.00Fa | 1.98±0.01b | 7.88±0.00Ea | 5.10±0.02b | 51.00±0.01Ga | 74.19±0.11b |
>1 mm | 1—0.5 mm | 0.5—0.25 mm | <0.25 mm | W0.25 | MWD | GMD | D | K | |
---|---|---|---|---|---|---|---|---|---|
>1 mm | 1 | ||||||||
1—0.5 mm | -0.204 | 1 | |||||||
0.5—0.25 mm | -0.530** | 0.298 | 1 | ||||||
<0.25 mm | -0.961** | -0.024 | 0.335 | 1 | |||||
W0.25 | 0.961** | 0.024 | -0.335 | -1.000** | 1 | ||||
MWD | 0.999** | -0.164 | -0.511* | -0.972** | 0.972** | 1 | |||
GMD | 0.857** | -0.090 | -0.493* | -0.963** | 0.963** | 0.968** | 1 | ||
D | -0.987** | 0.108 | 0.508* | 0.969** | -0.969** | -0.990** | -0.967** | 1 | |
K | -0.982** | -0.253 | 0.267 | 0.979** | -0.979** | -0.987** | -0.958** | 0.977** | 1 |
Table 2 Correlation between the content of water-stable aggregates of each particle size and aggregate stability indexes
>1 mm | 1—0.5 mm | 0.5—0.25 mm | <0.25 mm | W0.25 | MWD | GMD | D | K | |
---|---|---|---|---|---|---|---|---|---|
>1 mm | 1 | ||||||||
1—0.5 mm | -0.204 | 1 | |||||||
0.5—0.25 mm | -0.530** | 0.298 | 1 | ||||||
<0.25 mm | -0.961** | -0.024 | 0.335 | 1 | |||||
W0.25 | 0.961** | 0.024 | -0.335 | -1.000** | 1 | ||||
MWD | 0.999** | -0.164 | -0.511* | -0.972** | 0.972** | 1 | |||
GMD | 0.857** | -0.090 | -0.493* | -0.963** | 0.963** | 0.968** | 1 | ||
D | -0.987** | 0.108 | 0.508* | 0.969** | -0.969** | -0.990** | -0.967** | 1 | |
K | -0.982** | -0.253 | 0.267 | 0.979** | -0.979** | -0.987** | -0.958** | 0.977** | 1 |
1 | Tisdall J M,Oades J M.Organic matter and water‐stable aggregates in soils[J].European Journal of Soil Science,2010,33(2):118-129. |
2 | 陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报,1994(1):18-25. |
3 | 文倩.半干旱荒漠化地区不同土地利用方式下土壤团聚体微生物量与群落功能特性分析[D].北京:中国农业大学,2004. |
4 | 李娜,韩晓增,尤孟阳,等.土壤团聚体与微生物相互作用研究[J].生态环境学报,2013,22(9):1625-1632. |
5 | Okolo C C,Gebresamuel G,Zenebe A,et al.Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment[J].Agriculture Ecosystems & Environment,2020,297:106924. |
6 | 章明奎,何振立.成土母质对土壤团聚体形成的影响[J].热带亚热带土壤科学,1997(3):198-202. |
7 | 武均,蔡立群,张仁陟,等.不同耕作措施对旱作农田土壤水稳性团聚体稳定性的影响[J].中国生态农业学报,2018,26(3):329-337. |
8 | 苑亚茹.不同土地利用与施肥管理对黑土团聚体中有机碳的影响[D].北京:中国科学院研究生院,2013. |
9 | Guan S,An N,Zong N,et al.Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow[J].Soil Biology and Biochemistry,2018,116:224-236. |
10 | Valmis S,Dimoyiannis D,Danalatos N G.Assessing interrill erosion rate from soil aggregate instability index,rainfall intensity and slope angle on cultivated soils in central Greece[J].Soil & Tillage Research,2005,80(1/2):139-147. |
11 | 韩新生,马璠,郭永忠,等.土地利用方式对表层土壤水稳性团聚体的影响[J].干旱区资源与环境,2018,32(2):114-120. |
12 | Arun J N,Rattan L A L.Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north appalachian region,USA[J].Pedosphere,2017,27(1):172-176. |
13 | Yilmaz E,Snmez M.The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales[J].Soil and Tillage Research,2017,168:118-124. |
14 | 刘文利,吴景贵,傅民杰,等.种植年限对果园土壤团聚体分布与稳定性的影响[J].水土保持学报,2014,28(1):129-135. |
15 | 林诚,郑祥洲,郭宝玲,等.亚热带地区不同种植年限果园土壤团聚体结构及有机碳、氮分布特征[J].农业环境科学学报,2019,38(7):1560-1566. |
16 | 蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响[J].水土保持学报,2008,22(2):141-145. |
17 | 顾鑫,安婷婷,李双异,等.δ~(13)C法研究秸秆添加对棕壤团聚体有机碳的影响[J].水土保持学报,2014,28(2):243-247,312. |
18 | 陈正发,史东梅,谢均强,等.紫色土旱坡地土壤团聚体稳定性特征对侵蚀过程的影响[J].中国农业科学,2011,44(13):2721-2729. |
19 | 何绍浪,黄尚书,钟义军,等.耕作深度对红壤坡耕地土壤水稳性团聚体特征的影响[J].水土保持研究,2019,26(6):127-132. |
20 | 苏永中,赵哈林,张铜会,等.科尔沁沙地旱作农田土壤退化的过程和特征[J].水土保持学报,2002,16(1):25-28,115. |
21 | Cantón Y A,Solé-Benet A C.Aggregate stability in range sandy loam soils relationships with runoff and erosion[J].Catena,2009,77(3):192-199. |
22 | 苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71-74. |
23 | 宁志英,李玉霖,杨红玲,等.沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响[J].生态学报,2019,39(10):3537-3546. |
24 | 中国科学院南京土壤研究所.土壤理化分析[M]上海:上海科技出版社,1978. |
25 | 赵红,袁培民,吕贻忠,等.施用有机肥对土壤团聚体稳定性的影响[J].土壤,2011,43(2):306-311. |
26 | 王丽,李军,李娟,等.轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J].应用生态学报,2014,25(3):759-768. |
27 | 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993(20):1896-1899. |
28 | Shirazi M A,Boersma L.A unifying quantitative analysis of soil texture1[J].Soil Science Society of America Journal,1984,48(1):142-147. |
29 | 何冰,李廷亮,栗丽,等.复垦土壤水稳性团聚体碳氮分布对施肥的响应[J].天津农业科学,2019,25(3):43-49. |
30 | 杜静,柏勇,范茂攀,等.玉米/马铃薯间作根系特征及其与土壤水稳性团聚体关系[J].山东农业科学,2020,52(6):57-64. |
31 | Six J,Paustian K,Elliott E T,et al.Soil structure and organic matter i.distribution of aggregate‐size classes and aggregate‐associated carbon[J].Soil Science Society of America Journal,2000,64(2):351-366. |
32 | 安婷婷,汪景宽,李双异,等.施用有机肥对黑土团聚体有机碳的影响[J].应用生态学报,2008,19(2):369-373. |
33 | 朱家琪,满秀玲,王飞.我国寒温带四种森林植被类型下土壤团聚体粒级组成及其稳定性比较研究[J].土壤通报,2020,51(3):606-613. |
34 | 王洋,刘景双,王全英.冻融作用对土壤团聚体及有机碳组分的影响[J].生态环境学报,2013,22(7):1269-1274. |
35 | Sodhi G P S,Beri V,Benbi D K.Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system[J].Soil & Tillage Research,2009,103(2):412-418. |
36 | Pohl M,Alig D,Krner C,et al.Higher plant diversity enhances soil stability in disturbed alpine ecosystems[J].Plant & Soil,2009,324(1/2):91-102. |
37 | Pojasok T,Kay B D.Effect of root exudates from corn and bromegrass on soil structural stability[J].Canadian Journal of Soil Science,1990,70(3):351-362. |
38 | 胡云锋,刘纪远,庄大方,等.不同土地利用/土地覆盖下土壤粒径分布的分维特征[J].土壤学报,2005(2):336-339. |
39 | 陈琳,王健,宋鹏帅,等.黄土坡面结皮对土壤水稳性团聚体的稳定性和可蚀性的影响[J].中国农学通报,2020,36(18):87-92. |
40 | Six J,Bossuyt H,Degryze S,et al.A history of research on the link between (micro) aggregates,soil biota,and soil organic matter dynamics[J].Soil & Tillage Research,2004,79(1):7-31. |
41 | 沈芳宇,王永东,李生宇,等.塔里木沙漠公路防护林土壤团聚体特征[J].干旱区研究,2015,32(5):910-917. |
42 | 王梦雪,李永梅,酒鹃鹃,等.种植模式对土壤团聚体稳定性和有机碳含量的影响[J].广东农业科学,2020,47(5):52-59. |
43 | Bronick C J,Lal R.Soil structure and management:a review[J].Geoderma,2005,124(1/2):3-22. |
[1] | Wenfan Wang, Rentao Liu, Zhixia Guo, Yonghong Feng, Jiayu Jiang. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Dseart [J]. Journal of Desert Research, 2021, 41(1): 209-218. |
[2] | Xiong Xin, Wang Haibin, Xiao Jianhua, Zuo Hejun. Particle Size Distribution Models of Gobi Sediments and Its Significance to the Effect of Sorting [J]. Journal of Desert Research, 2019, 39(2): 202-208. |
[3] | Yang Huan, Li Yuqiang, Wang Xuyang, Niu Yayi, Gong Xiangwen, Yu Peidong. Characteristics of Aeolian Sediment Flux Structure over Different Underlying Surfaces in Semi-arid Area [J]. Journal of Desert Research, 2018, 38(6): 1144-1152. |
[4] | Wang Zhongyuan, Luo Wanyin, Dong Zhibao, Lu Junfeng, Qian Guangqiang, Xu Guijiang. Grain Size Characteristics of the Blowout Surface Sediments and Its Aerodynamic Significance in the Alpine Meadow Region of the Gonghe Basin [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(1): 7-16. |
[5] | Wang Jinhua, Zhang Ronggang, Yao Wenyi, Li Zhanbin, Zheng Xiaomei. Sediment Particle Size Distribution Characteristics in a Desert Gully Influenced by Coupled Aeolian and Fluvial Processes [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(6): 1695-1700. |
[6] | Zhao Guanghui, Su Fangli, Li Haifu, Li Yiming. Effects of Land Use on Fractal Dimension of Soil Particles in the Upper Reaches of the Liaohe River Watershed [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(6): 1622-1627. |
[7] | Nan Ning, Mei Fanmin, Shao Tianjie, Wang Chunyang, Wang Nan. Effect of Sieving Duration and Samples Weight on Dry Sieving Analysis Results of Fine Sand Particles [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(5): 1260-1264. |
[8] | Gao Zeyong, Wang Yibo, Wen Jing, Sheng Zhaohai. The Influence of Thermokarst Lake Formation on Soil Desertification Process in Permafrost Regions of the Source Region of the Yangtze River [J]. JOURNAL OF DESERT RESEARCH, 2014, 34(3): 758-764. |
[9] | FAN Li;WU Sheng-zhi. Numerical Computation of Nonuniform Grains Saltation [J]. JOURNAL OF DESERT RESEARCH, 2011, 31(3): 583-587. |
[10] | LI Wan-yuan;SHEN Zhi-bao;LU Shi-hua;LI Yao-hui. Sensitivity Tests of Factors Influencing Wind Erosion [J]. JOURNAL OF DESERT RESEARCH, 2007, 27(6): 984-993. |
[11] | QUAN Jian-nong, XI Xiao-xia, WANG Xin, LI Jie, ZHANG Lei. Analysis on Aerosol Concentration in Lanzhou City from Sand-dust Storm in 2001 [J]. JOURNAL OF DESERT RESEARCH, 2005, 25(1): 93-97. |
[12] | SANG Jian-ren, YANG You-ling. Characteristics of Aerosol Particle Size Distribution during Summer in Yinchuan City,Ningxi Province [J]. JOURNAL OF DESERT RESEARCH, 2003, 23(3): 328-330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech