Journal of Desert Research ›› 2021, Vol. 41 ›› Issue (4): 109-120.DOI: 10.7522/j.issn.1000-694X.2021.00041
Jin Fana(), Shiyao Lia, Hailong Yua(
), Juying Huangb
Received:
2021-01-16
Revised:
2021-03-26
Online:
2021-07-27
Published:
2021-07-27
Contact:
Hailong Yu
CLC Number:
Jin Fan, Shiyao Li, Hailong Yu, Juying Huang. Soil enzyme activity and carbon, nitrogen and phosphorus stoichiometric characteristics under different types of biocrusts and subsoil in Mu Us Sandland[J]. Journal of Desert Research, 2021, 41(4): 109-120.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2021.00041
样地 | 坡度/% | 结皮特征 | 主要植物种 | 植被盖度/% |
---|---|---|---|---|
样地1 | 4 | 生物结皮总盖度82%,藻结皮相对盖度49%,藓结皮相对盖度26%,地衣结皮相对盖度9% | 猪毛蒿(Artemisia scoparia) 冰草(Agropyron cristatum) 沙生针茅(Stipa glareosa) 甘草(Glycyrrhiza uralensis) | 33 |
样地2 | 7 | 生物结皮总盖度80%,藻结皮相对盖度45%,藓结皮相对盖度42%,地衣结皮相对盖度3% | 蒙古韭(Allium mongolicum ) 苦豆子(Sophora alopecuroides) 猪毛蒿(Artemisia scoparia) 甘草(Glycyrrhiza uralensis) | 53 |
样地3 | 5 | 生物结皮总盖度84%,藻结皮相对盖度39%,藓结皮相对盖度42%,地衣结皮相对盖度5% | 柠条(Caragana korshinskii) 冰草(Agropyron cristatum) 蒙古韭(Allium mongolicum) | 26 |
Table 1 Basic information of sample plots
样地 | 坡度/% | 结皮特征 | 主要植物种 | 植被盖度/% |
---|---|---|---|---|
样地1 | 4 | 生物结皮总盖度82%,藻结皮相对盖度49%,藓结皮相对盖度26%,地衣结皮相对盖度9% | 猪毛蒿(Artemisia scoparia) 冰草(Agropyron cristatum) 沙生针茅(Stipa glareosa) 甘草(Glycyrrhiza uralensis) | 33 |
样地2 | 7 | 生物结皮总盖度80%,藻结皮相对盖度45%,藓结皮相对盖度42%,地衣结皮相对盖度3% | 蒙古韭(Allium mongolicum ) 苦豆子(Sophora alopecuroides) 猪毛蒿(Artemisia scoparia) 甘草(Glycyrrhiza uralensis) | 53 |
样地3 | 5 | 生物结皮总盖度84%,藻结皮相对盖度39%,藓结皮相对盖度42%,地衣结皮相对盖度5% | 柠条(Caragana korshinskii) 冰草(Agropyron cristatum) 蒙古韭(Allium mongolicum) | 26 |
层次 /cm | 结皮类型 | 容重BD /(g·cm-3) | 含水率 SWC/% | 孔隙度 Por/% | pH值 | 碱解氮AN /(mg·kg-1) | 速效磷AP /(mg·kg-1) | 速效钾AK /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
结皮层 | 藻结皮 | 1.12±0.03Aa | 5.20±0.48Aa | 54.79±1.07Aa | 8.07±0.01Aa | 668.74±51.75Aa | 14.74±1.89Aa | 117.76±2.76Aa |
混生结皮 | 1.11±0.09Aa | 4.20±0.66Aa | 58.16±3.32Aa | 8.21±0.15Aa | 809.89±50.90Aa | 15.29±2.97Aa | 137.18±3.14Aa | |
藓结皮 | 1.04±0.07Aa | 4.47±0.27Aa | 60.82±2.70Aa | 7.84±0.07Ab | 1096.98±63.74Ab | 26.14±2.61Ab | 202.32±18.5Ab | |
0—5 | 藻结皮 | 1.31±0.01Bab | 7.54±0.75Aa | 50.62±0.36Ba | 8.47±0.02Ba | 196.08±4.53Ba | 6.52±0.61Ba | 94.82±3.26Ba |
混生结皮 | 1.37±0.03Ba | 5.31±0.27Ab | 48.36±1.27Ba | 8.51±0.02Bab | 272.52±5.41Bb | 7.83±0.96Ba | 110.16±2.33Ba | |
藓结皮 | 1.23±0.05Bb | 5.52±0.27Ab | 53.71±2.03Bb | 8.60±0.04Bb | 316.11±20.02Bc | 10.41±0.69Bb | 135.02±8.72Bb | |
5—10 | 藻结皮 | 1.39±0.05Ba | 7.14±0.91Aa | 47.44±1.95Ba | 8.50±0.02Ba | 117.80±15.31Ba | 5.09±1.00BCa | 70.15±5.72Ca |
混生结皮 | 1.32±0.04Ba | 3.97±0.29Bb | 50.16±1.57Ba | 8.43±0.09Ba | 215.34±4.01Cb | 5.72±0.43BCa | 80.26±7.35Ca | |
藓结皮 | 1.31±0.04BCa | 4.28±0.29Bb | 50.44±1.42BCa | 8.80±0.07Bb | 245.38±23.25Bb | 6.65±0.26BCa | 124.34±3.57Bb | |
10—20 | 藻结皮 | 1.39±0.02Ba | 6.52±1.31Aa | 47.55±0.70Ba | 8.47±0.05Ba | 110.13±15.02Ba | 2.75±0.24Ca | 47.58±9.08Da |
混生结皮 | 1.43±0.04Ba | 4.71±0.36ABa | 46.09±1.40Ba | 8.51±0.13Ba | 212.8±25.20Cb | 2.03±0.09Ca | 52.00±4.42Da | |
藓结皮 | 1.39±0.01Ca | 4.34±0.23Ba | 47.45±0.31Ca | 8.89±0.10Cb | 178.27±5.20Cb | 2.55±0.38Ca | 75.74±2.12Cb |
Table 2 Physicochemical properties of biocrusts and subsoil
层次 /cm | 结皮类型 | 容重BD /(g·cm-3) | 含水率 SWC/% | 孔隙度 Por/% | pH值 | 碱解氮AN /(mg·kg-1) | 速效磷AP /(mg·kg-1) | 速效钾AK /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
结皮层 | 藻结皮 | 1.12±0.03Aa | 5.20±0.48Aa | 54.79±1.07Aa | 8.07±0.01Aa | 668.74±51.75Aa | 14.74±1.89Aa | 117.76±2.76Aa |
混生结皮 | 1.11±0.09Aa | 4.20±0.66Aa | 58.16±3.32Aa | 8.21±0.15Aa | 809.89±50.90Aa | 15.29±2.97Aa | 137.18±3.14Aa | |
藓结皮 | 1.04±0.07Aa | 4.47±0.27Aa | 60.82±2.70Aa | 7.84±0.07Ab | 1096.98±63.74Ab | 26.14±2.61Ab | 202.32±18.5Ab | |
0—5 | 藻结皮 | 1.31±0.01Bab | 7.54±0.75Aa | 50.62±0.36Ba | 8.47±0.02Ba | 196.08±4.53Ba | 6.52±0.61Ba | 94.82±3.26Ba |
混生结皮 | 1.37±0.03Ba | 5.31±0.27Ab | 48.36±1.27Ba | 8.51±0.02Bab | 272.52±5.41Bb | 7.83±0.96Ba | 110.16±2.33Ba | |
藓结皮 | 1.23±0.05Bb | 5.52±0.27Ab | 53.71±2.03Bb | 8.60±0.04Bb | 316.11±20.02Bc | 10.41±0.69Bb | 135.02±8.72Bb | |
5—10 | 藻结皮 | 1.39±0.05Ba | 7.14±0.91Aa | 47.44±1.95Ba | 8.50±0.02Ba | 117.80±15.31Ba | 5.09±1.00BCa | 70.15±5.72Ca |
混生结皮 | 1.32±0.04Ba | 3.97±0.29Bb | 50.16±1.57Ba | 8.43±0.09Ba | 215.34±4.01Cb | 5.72±0.43BCa | 80.26±7.35Ca | |
藓结皮 | 1.31±0.04BCa | 4.28±0.29Bb | 50.44±1.42BCa | 8.80±0.07Bb | 245.38±23.25Bb | 6.65±0.26BCa | 124.34±3.57Bb | |
10—20 | 藻结皮 | 1.39±0.02Ba | 6.52±1.31Aa | 47.55±0.70Ba | 8.47±0.05Ba | 110.13±15.02Ba | 2.75±0.24Ca | 47.58±9.08Da |
混生结皮 | 1.43±0.04Ba | 4.71±0.36ABa | 46.09±1.40Ba | 8.51±0.13Ba | 212.8±25.20Cb | 2.03±0.09Ca | 52.00±4.42Da | |
藓结皮 | 1.39±0.01Ca | 4.34±0.23Ba | 47.45±0.31Ca | 8.89±0.10Cb | 178.27±5.20Cb | 2.55±0.38Ca | 75.74±2.12Cb |
指标 | 结皮类型 | 土壤深度 | 结皮类型×土壤深度 | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
过氧化氢酶Cat | 227.942 | <0.01 | 2538.858 | <0.01 | 117.118 | <0.01 | ||
蔗糖酶Suc | 81.692 | <0.01 | 4499.391 | <0.01 | 23.655 | <0.01 | ||
碱性磷酸酶Alp | 17.992 | <0.01 | 569.821 | <0.01 | 3.668 | <0.05 | ||
脲酶Ure | 82.408 | <0.01 | 291.958 | <0.01 | 22.095 | <0.01 | ||
有机碳SOC | 12.788 | <0.01 | 172.720 | <0.01 | 10.721 | <0.01 | ||
全氮TN | 27.893 | <0.01 | 499.220 | <0.01 | 12.241 | <0.01 | ||
全磷TP | 31.087 | <0.01 | 91.853 | <0.01 | 2.013 | >0.05 | ||
C/N | 1.017 | >0.05 | 42.7 | <0.01 | 2.109 | >0.05 | ||
C/P | 4.904 | >0.05 | 161.733 | <0.01 | 6.066 | <0.01 | ||
N/P | 1.557 | >0.05 | 187.064 | <0.01 | 1.968 | >0.05 |
Table 3 The ANOVA results of soil enzyme activities and C,N,P and C∶N∶P stoichiometry among different soil layer and different biocrusts
指标 | 结皮类型 | 土壤深度 | 结皮类型×土壤深度 | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
过氧化氢酶Cat | 227.942 | <0.01 | 2538.858 | <0.01 | 117.118 | <0.01 | ||
蔗糖酶Suc | 81.692 | <0.01 | 4499.391 | <0.01 | 23.655 | <0.01 | ||
碱性磷酸酶Alp | 17.992 | <0.01 | 569.821 | <0.01 | 3.668 | <0.05 | ||
脲酶Ure | 82.408 | <0.01 | 291.958 | <0.01 | 22.095 | <0.01 | ||
有机碳SOC | 12.788 | <0.01 | 172.720 | <0.01 | 10.721 | <0.01 | ||
全氮TN | 27.893 | <0.01 | 499.220 | <0.01 | 12.241 | <0.01 | ||
全磷TP | 31.087 | <0.01 | 91.853 | <0.01 | 2.013 | >0.05 | ||
C/N | 1.017 | >0.05 | 42.7 | <0.01 | 2.109 | >0.05 | ||
C/P | 4.904 | >0.05 | 161.733 | <0.01 | 6.066 | <0.01 | ||
N/P | 1.557 | >0.05 | 187.064 | <0.01 | 1.968 | >0.05 |
指标 | Cat | Suc | Alp | Ure | SOC | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|---|---|
过氧化氢酶Cat | 1 | 0.929** | 0.878** | 0.938** | 0.713** | 0.885** | 0.913** | 0.413* | 0.447** | 0.600** |
蔗糖酶Suc | 1 | 0.821** | 0.949** | 0.738** | 0.873** | 0.881** | 0.465** | 0.498** | 0.588** | |
碱性磷酸酶Alp | 1 | 0.854** | 0.703** | 0.791** | 0.842** | 0.480** | 0.511** | 0.587** | ||
脲酶Ure | 1 | 0.739** | 0.853** | 0.898** | 0.517** | 0.492** | 0.551** | |||
有机碳SOC | 1 | 0.829** | 0.690** | 0.728** | 0.846** | 0.743** | ||||
全氮TN | 1 | 0.811** | 0.387* | 0.603** | 0.814** | |||||
全磷TP | 1 | 0.498** | 0.365* | 0.441** | ||||||
C/N | 1 | 0.789** | 0.422* | |||||||
C/P | 1 | 0.820** | ||||||||
N/P | 1 |
Table 4 Correlation analysis of biocrust and subsoil ecological stoichiometric characteristics and enzyme activity
指标 | Cat | Suc | Alp | Ure | SOC | TN | TP | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|---|---|---|
过氧化氢酶Cat | 1 | 0.929** | 0.878** | 0.938** | 0.713** | 0.885** | 0.913** | 0.413* | 0.447** | 0.600** |
蔗糖酶Suc | 1 | 0.821** | 0.949** | 0.738** | 0.873** | 0.881** | 0.465** | 0.498** | 0.588** | |
碱性磷酸酶Alp | 1 | 0.854** | 0.703** | 0.791** | 0.842** | 0.480** | 0.511** | 0.587** | ||
脲酶Ure | 1 | 0.739** | 0.853** | 0.898** | 0.517** | 0.492** | 0.551** | |||
有机碳SOC | 1 | 0.829** | 0.690** | 0.728** | 0.846** | 0.743** | ||||
全氮TN | 1 | 0.811** | 0.387* | 0.603** | 0.814** | |||||
全磷TP | 1 | 0.498** | 0.365* | 0.441** | ||||||
C/N | 1 | 0.789** | 0.422* | |||||||
C/P | 1 | 0.820** | ||||||||
N/P | 1 |
参数 | 条件影响 | 多元相关 比率/% | F | P |
---|---|---|---|---|
全氮TN | 0.921 | 93.6 | 293 | 0.002** |
速效钾AK | 0.026 | 2.6 | 11.9 | 0.002** |
含水量SWC | 0.009 | 0.9 | 4.9 | 0.030* |
全磷TP | 0.007 | 0.7 | 5.9 | 0.004** |
C/P | 0.006 | 0.6 | 4.4 | 0.026* |
有机碳SOC | 0.005 | 0.5 | 2.9 | 0.056 |
碱解氮AN | 0.004 | 0.4 | 2.6 | 0.082 |
pH | 0.002 | 0.2 | 1.6 | 0.224 |
容重BD | 0.001 | 0.1 | 0.8 | 0.438 |
速效磷AP | 0.001 | 0.1 | 1.1 | 0.378 |
孔隙度Por | 0.001 | 0.1 | 1.2 | 0.324 |
N/P | 0.001 | 0.1 | 0.2 | 0.876 |
Table 5 Forward selection with Monte Carlo permutation test of soil environmental indicators as explanatory variables
参数 | 条件影响 | 多元相关 比率/% | F | P |
---|---|---|---|---|
全氮TN | 0.921 | 93.6 | 293 | 0.002** |
速效钾AK | 0.026 | 2.6 | 11.9 | 0.002** |
含水量SWC | 0.009 | 0.9 | 4.9 | 0.030* |
全磷TP | 0.007 | 0.7 | 5.9 | 0.004** |
C/P | 0.006 | 0.6 | 4.4 | 0.026* |
有机碳SOC | 0.005 | 0.5 | 2.9 | 0.056 |
碱解氮AN | 0.004 | 0.4 | 2.6 | 0.082 |
pH | 0.002 | 0.2 | 1.6 | 0.224 |
容重BD | 0.001 | 0.1 | 0.8 | 0.438 |
速效磷AP | 0.001 | 0.1 | 1.1 | 0.378 |
孔隙度Por | 0.001 | 0.1 | 1.2 | 0.324 |
N/P | 0.001 | 0.1 | 0.2 | 0.876 |
1 | 郑娇莉,李双双,彭成荣,等.干燥对人工生物土壤结皮固氮酶活性恢复过程的影响[J].中国科学·生命科学,2017,47(7):759-769. |
2 | 刘玉冰,王增如,高天鹏.温带荒漠生物土壤结皮微生物群落结构与功能演替研究综述[J].微生物学通报,2020,47(9):2974-2983. |
3 | Zhang J H,Zhao N,Liu C C,et al.C∶N∶P stoichiometry in China's forests:from organs to ecosystems[J].Functional Ecology,2018,32:50-60. |
4 | Sardans J,Rivas-Ubach A,Peulas J.The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function:a review and perspectives[J].Biogeochemistry,2012,111:1-39. |
5 | 高丽倩,赵允格,许明祥,等.生物土壤结皮演替对土壤生态化学计量特征的影响[J].生态学报,2018,38(2):678-688. |
6 | Delgado-Baquerizo M,Oliverio A M,Brewer T E,et al.A global atlas of the dominant bacteria found in soil[J].Science,2018,359:320-325. |
7 | 勒佳佳,苏原,彭庆文,等.氮添加对天山高寒草原土壤酶活性和酶化学计量特征的影响[J].干旱区研究,2020,37(2):382-389. |
8 | 孙永琦,冯薇,张宇清,等.毛乌素沙地生物土壤结皮对油蒿群落土壤酶活性的影响[J].北京林业大学学报,2020,42(11):82-90. |
9 | Xu Z W,Yu G R,Zhang X Y,et al.Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J].Soil Biology and Biochemistry,2017,104:152-163. |
10 | Badiane N N Y,Chotte J L,Pate E.Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semiarid tropical regions[J].Applied Soil Ecology,2001,18(3):229-238. |
11 | Waring B G,Weintraub S R,Sinsabaugh R L.Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J].Biogeochemistry,2014,117(1):101-113. |
12 | 吴旭东,俞鸿千,蒋齐,等.降雨对荒漠草原生物土壤结皮化学计量的影响[J].农业工程学报,2020,36(16):118-124. |
13 | 吴丽芳,王紫泉,王妍,等.喀斯特高原不同石漠化程度土壤C,N,P化学计量特征和酶活性的关系[J].生态环境学报,2019,28(12):2332-2340. |
14 | Elbert W,Weber B,Burrows S,et al.Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J].Nature Geoscience,2012,5(7):459-462. |
15 | 杨巧云,赵允格,包天莉,等.黄土丘陵区不同类型生物结皮的土壤生态化学计量学特征[J].应用生态学报,2019,30(8):2699-2706. |
16 | 马永强,石云,郝姗姗,等.宁东能源化工基地土地变化及其对生境质量的影响[J].兰州大学学报(自然科学版),2020,56(1):118-124. |
17 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:56-135. |
18 | 王晓岚,卡丽毕努尔,杨文念.土壤碱解氮测定方法比较[J].北京师范大学学报(自然科学版),2010,46(1):76-78. |
19 | 范文波,李小娟.涂膜法测定黄土结皮容重[J].山西水土保持科技,2001(3):9-10. |
20 | 关松荫.土壤酶及其研究方法[M].北京:中国农业科技出版社,1986:101-122. |
21 | 杨航宇,刘艳梅,王廷璞.荒漠区生物土壤结皮对土壤酶活性的影响[J].土壤学报,2015,52(3):654-663. |
22 | Ren C,Zhao F,Shi Z,et al.Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J].Soil Biology and Biochemistry,2017,115:1-10. |
23 | 王彦峰,肖波,王兵,等.黄土高原水蚀风蚀交错区藓结皮对土壤酶活性的影响[J].应用生态学报,2017,28(11):3553-3561. |
24 | 马任甜,安韶山,黄懿梅.黄土高原不同林龄刺槐林碳、氮、磷化学计量特征[J].应用生态学报,2017,28(9):2787-2793. |
25 | Dümig A,Veste M,Hagedorn F, et al.Organic matter from biological soil crusts induces the initial formation of sandy temperature soils[J].Catena,2014,122:196-208. |
26 | Liu Y B,Zhao L N,Wang Z R,et al.Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J].Soil Biology and Biochemistry,2018,126:40-48. |
27 | 于贵瑞,李轩然,赵宁,等.生态化学计量学在陆地生态系统碳-氮-水耦合循环理论体系中作用初探[J].第四纪研究,2014,34(4):881-890. |
28 | Li X R,Zhang P,Su Y G,et al.Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China:a four-year field study[J].Catena,2012,97:119-126. |
29 | Miralles I,Domingo F,Garca-Campos E,et al.Biological and microbial activity in biological soil crusts from the Tabernas desert,a sub-arid zone in SE Spain[J].Soil Biology and Biochemistry,2012,55(55):113-121. |
30 | 高亮,高永,王静,等.土壤覆盖类型对科尔沁沙地南缘土壤有机碳储量的影响[J].中国沙漠,2016,36(5):1357-1364. |
31 | Hu R,Wang X P,Pan Y X,et al.The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions[J].European Journal of Soil Biology,2014,62(5):66-73. |
32 | Gusewell S.N∶P ratios in terrestrial plants:variation and functional significance[J].New Phytologist,2004,164(2):243-266. |
33 | Tian H Q,Chen G S,Zhang C,et al.Pattern and variation of C∶N∶P ratios in China’s soils:a synthesis of observational data[J].Biogeochemistry,2010,98(1/3):139-151. |
34 | Cory C C,Daniel L.C∶N∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass?[J].Biogeochemistry,2007,85(3):235-252. |
35 | Zhang W,Gao D,Chen Z X,et al.Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J].Geoderma,2018,325:152-161. |
36 | 陶冶,吴甘霖,刘耀斌,等.古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J].中国沙漠,2017,37(2):305-314. |
37 | 丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系[J].生态学杂志,2011,30(1):77-81. |
38 | Ren C J,Chen J,Deng J,et al.Response of microbial diversity to C:N:P stoichiometry in fine root and microbial biomass following afforestation[J].Biology and Fertility of Soils,2017,53(4):457-468. |
39 | 高海宁,张勇,秦嘉海,等.祁连山黑河上游不同退化草地有机碳和酶活性分布特征[J].草地学报,2014,22(2):283-290. |
40 | 任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007(12):2665-2673. |
41 | Allison V J,Condronl M,Peltzer D A,et al.Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence,New Zealand[J].Soil Biology and Biochemistry,2007,39(7):1770-1781. |
42 | Kourtev P S,Ehrenfeld J G,Häggblom M.Exotic plant species alter the microbial community structure and function in the soil[J].Ecology,2002,83(11):3152-3166. |
43 | 叶协锋,杨超,李正,等.绿肥对植烟土壤酶活性及土壤肥力的影响[J].植物营养与肥料学报,2012,19(2):445-454. |
44 | 张元明,杨维康,王雪芹,等.生物结皮影响下的土壤有机质分异特征[J].生态学报,2005,25(12):3420-3425. |
45 | Cenini V L,Fornara D A,Mc Mullan G,et al.Linkages between extra-cellular enzyme activities and the carbon and nitrogen content of grassland soils[J].Soil Biology and Biochemistry,2016,96:198-206. |
46 | 安韶山.黄土丘陵区土壤肥力质量对植被恢复的响应及其演变[D].陕西杨凌:西北农林科技大学,2004. |
47 | 杨媛媛,黎建强,陈奇伯,等.滇中高原常绿阔叶林土壤生物学特性对土壤理化性质的影响[J].生态环境学报,2016,25(3):393-401. |
[1] | Liu Yanmei, Yang Hangyu, Jia Rongliang, Li Yixuan. Effects of Human Trampling Biocrusts on Soil Enzyme Activities [J]. Journal of Desert Research, 2019, 39(4): 54-63. |
[2] | Yang Hangyu, Liu Changzhong, Liu Yanmei, Yang Haotian. Effects of Trampling Biocrusts on Soil Microbial Biomass in Desert Areas [J]. Journal of Desert Research, 2019, 39(2): 35-44. |
[3] | Bao Tianli, Zhao Yunge, Gao Liqian, Shi Yafang. Dynamic of Culturable Microorganisms in Biological Soil Crusts under Trampling Disturbance [J]. Journal of Desert Research, 2019, 39(1): 119-126. |
[4] | LI Hong-bo;BAI Ai-ning;ZHANG Guo-sheng;WANG Lin-he;YANG Xin-lin;ZHANG Yu. Analysis on Soil Condensation Water Source in Mu Us Sandland [J]. JOURNAL OF DESERT RESEARCH, 2010, 30(2): 241-246. |
[5] | FANG Shi-bo;XU Duan-yang;ZHANG Xin-shi. Desertification Process and Its Driving Meteorological Factors in Mu Us Sandland [J]. JOURNAL OF DESERT RESEARCH, 2009, 29(5): 796-801. |
[6] | WANG Ji-he;MA Quan-lin;LIU Hu-jun;YANG Zi-hui;ZHANG De-kui. Effect of Wind-breaking and Sand-fixing of Vegetation in Progressive Succession on Desertification Land in Arid Area [J]. JOURNAL OF DESERT RESEARCH, 2006, 26(6): 908-909. |
[7] | ZHOU Ya-li, LU Hua-yu, ZHANG Jia-fu, ZHOU Li-ping, Miao Xiao-dong, MASOO J A. Active and Inactive Phases of Sand-dune in Mu Us and Otindag Sandlands during Late Quaternary Suggested by OSL Dating [J]. JOURNAL OF DESERT RESEARCH, 2005, 25(3): 342-350. |
[8] | HAO Cheng-yuan, WU Shao-hong, YANG Qin-ye. Research on Relationship between Sandy Desertification and Land-use in Mu Us Region [J]. JOURNAL OF DESERT RESEARCH, 2005, 25(1): 33-39. |
[9] | ZHANG Hong. Biomass Dynamics and Energy Efficiency of Rhizotaxy of the Grass+Forbs Steppe in Mu Us Sandland [J]. JOURNAL OF DESERT RESEARCH, 1999, 19(2): 151-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech