Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (3): 261-273.DOI: 10.7522/j.issn.1000-694X.2021.00143
Yanbin Hu1,2(), Qiang Zhang1,3,4(
), Guoju Xiao2, Zhengji Qiu5, Yongping Li6, Zhanqiang Guo2
Received:
2021-06-08
Revised:
2021-12-13
Online:
2022-05-20
Published:
2022-06-01
Contact:
Qiang Zhang
CLC Number:
Yanbin Hu, Qiang Zhang, Guoju Xiao, Zhengji Qiu, Yongping Li, Zhanqiang Guo. Effect of soil carbon, nitrgen and phosphate contents on maize production in semi-arid regions of China[J]. Journal of Desert Research, 2022, 42(3): 261-273.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2021.00143
耕层SOC /(g·kg-1) | 2017年 | 2018年 | 2019年 | 2017—2019年 | |||||
---|---|---|---|---|---|---|---|---|---|
样品数 /个 | SOC /(g·kg-1) | 样品数 /个 | SOC /(g·kg-1) | 样品数 /个 | SOC /(g·kg-1) | 样品数 /个 | 占总样品 比例/% | SOC /(g·kg-1) | |
合计 | 37 | 7.24±0.18 | 33 | 10.02±0.08 | 35 | 7.50±0.31 | 105 | 100 | 8.20±0.19 |
3.00—4.00 | 2 | 3.82±0.14 | — | — | 1 | 3.44 | 3 | 2.86 | 3.70±0.15 |
4.00—5.00 | — | — | 2 | 4.33±0.31 | 1 | 4.96 | 3 | 2.86 | 4.96±0.21 |
5.00—6.00 | 1 | 5.85 | — | — | 3 | 5.43±0.26 | 4 | 3.81 | 5.53±0.21 |
6.00—7.00 | 7 | 6.69±0.12 | — | — | 6 | 6.33±0.06 | 13 | 12.38 | 6.52±0.09 |
7.00—8.00 | 21 | 7.46±0.07 | — | — | 13 | 7.49±0.09 | 34 | 32.38 | 7.47±0.05 |
8.00—9.00 | 5 | 8.35±0.07 | — | — | 9 | 8.56±0.09 | 14 | 13.33 | 8.48±0.07 |
9.00—10.00 | 1 | 9.32 | 6 | 9.73±0.06 | — | — | 7 | 6.67 | 9.67±0.08 |
10.00—11.00 | — | — | 21 | 10.37±0.077 | — | — | 21 | 20.00 | 10.37±0.07 |
11.00—12.00 | — | — | 3 | 11.30±0.09 | — | — | 3 | 2.86 | 11.30±0.09 |
12.00—13.00 | — | — | 1 | 12.01 | 2 | 12.80±0.17 | 3 | 2.86 | 12.54±0.28 |
Table 1 Statistical analysis SOC of farmland surface soil in the study regions from 2017-2019
耕层SOC /(g·kg-1) | 2017年 | 2018年 | 2019年 | 2017—2019年 | |||||
---|---|---|---|---|---|---|---|---|---|
样品数 /个 | SOC /(g·kg-1) | 样品数 /个 | SOC /(g·kg-1) | 样品数 /个 | SOC /(g·kg-1) | 样品数 /个 | 占总样品 比例/% | SOC /(g·kg-1) | |
合计 | 37 | 7.24±0.18 | 33 | 10.02±0.08 | 35 | 7.50±0.31 | 105 | 100 | 8.20±0.19 |
3.00—4.00 | 2 | 3.82±0.14 | — | — | 1 | 3.44 | 3 | 2.86 | 3.70±0.15 |
4.00—5.00 | — | — | 2 | 4.33±0.31 | 1 | 4.96 | 3 | 2.86 | 4.96±0.21 |
5.00—6.00 | 1 | 5.85 | — | — | 3 | 5.43±0.26 | 4 | 3.81 | 5.53±0.21 |
6.00—7.00 | 7 | 6.69±0.12 | — | — | 6 | 6.33±0.06 | 13 | 12.38 | 6.52±0.09 |
7.00—8.00 | 21 | 7.46±0.07 | — | — | 13 | 7.49±0.09 | 34 | 32.38 | 7.47±0.05 |
8.00—9.00 | 5 | 8.35±0.07 | — | — | 9 | 8.56±0.09 | 14 | 13.33 | 8.48±0.07 |
9.00—10.00 | 1 | 9.32 | 6 | 9.73±0.06 | — | — | 7 | 6.67 | 9.67±0.08 |
10.00—11.00 | — | — | 21 | 10.37±0.077 | — | — | 21 | 20.00 | 10.37±0.07 |
11.00—12.00 | — | — | 3 | 11.30±0.09 | — | — | 3 | 2.86 | 11.30±0.09 |
12.00—13.00 | — | — | 1 | 12.01 | 2 | 12.80±0.17 | 3 | 2.86 | 12.54±0.28 |
容重 /(g·cm-3) | pH | 全盐 /(g·kg-1) | 有机质 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | 速效氮 /(mg·kg-1) | 速效磷 /(mg·kg-1) | 速效钾 /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
1.55—1.56 | 7.50—8.15 | 0.36—0.37 | 5.99—22.59 | 0.60—1.60 | 0.40—1.00 | 35.59—55.54 | 1.50—5.20 | 101.80—262.95 |
Table 2 The basic physical and chemical properties of soil in the study regions
容重 /(g·cm-3) | pH | 全盐 /(g·kg-1) | 有机质 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | 速效氮 /(mg·kg-1) | 速效磷 /(mg·kg-1) | 速效钾 /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
1.55—1.56 | 7.50—8.15 | 0.36—0.37 | 5.99—22.59 | 0.60—1.60 | 0.40—1.00 | 35.59—55.54 | 1.50—5.20 | 101.80—262.95 |
土壤有机碳 /(g·kg-1) | 籽粒有机碳 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | 蛋白质 /(g·kg-1) | 淀粉 /(g·kg-1) | 脂肪 /(g·kg-1) | 可溶性糖 /(mg·kg-1) |
---|---|---|---|---|---|---|---|
3.00—4.00 | 388.71±2.67e | 12.15±2.67d | 1.90±0.24c | 70.49±11.00d | 491.61±89.79e | 25.28±2.88e | 114.30±7.30e |
4.00—5.00 | 401.51±3.28e | 12.83±2.31d | 2.84±1.07b | 70.95±1.12d | 557.99±47.53d | 25.64±2.88e | 116.90±4.90e |
5.00—6.00 | 429.49±16.23d | 15.14±1.91c | 3.36±1.04b | 72.05±4.08d | 651.16±45.44cd | 26.78±1.81e | 155.20±28.40d |
6.00—7.00 | 442.47±13.87d | 17.40±2.30b | 4.09±0.72a | 105.11±13.29c | 668.42±25.42c | 27.72±1.46e | 167.60±17.30cd |
7.00—8.00 | 466.62±8.70d | 19.95±1.76a | 3.67±0.39b | 113.20±11.34bc | 674.43±15.62c | 27.76±0.86e | 175.40±14.90c |
8.00—9.00 | 467.86±11.96d | 20.80±2.40a | 2.99±0.46b | 114.35±17.08b | 675.89±33.15c | 30.24±1.68de | 181.20±15.40bc |
9.00—10.00 | 499.74±29.51c | 18.12±1.54a | 2.88±0.45b | 114.43±9.18b | 686.55±11.10c | 33.80±2.39cd | 191.00±17.00b |
10.00—11.00 | 509.32±20.06bc | 17.33±1.25b | 2.87±0.35b | 115.28±9.30b | 707.46±5.85b | 36.99±0.60bc | 191.10±13.70b |
11.00—12.00 | 517.05±1.09b | 17.02±0.25b | 2.70±0.38b | 123.94±20.71a | 709.51±27.38b | 38.33±0.67ab | 241.10±37.80a |
12.00—13.00 | 557.67±77.82a | 16.71±1.10c | 2.61±0.49b | 124.86±20.18a | 748.05±19.98a | 39.67±1.67a | 247.70±39.90a |
平均 | 473.09±6.80 | 18. 35±0.78 | 3.42±0.19 | 103.28±4.92 | 666.39±8.41 | 30.88±0.62 | 163.10±7.90 |
Table 3 Effects of soil organic carbon on maize quality
土壤有机碳 /(g·kg-1) | 籽粒有机碳 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | 蛋白质 /(g·kg-1) | 淀粉 /(g·kg-1) | 脂肪 /(g·kg-1) | 可溶性糖 /(mg·kg-1) |
---|---|---|---|---|---|---|---|
3.00—4.00 | 388.71±2.67e | 12.15±2.67d | 1.90±0.24c | 70.49±11.00d | 491.61±89.79e | 25.28±2.88e | 114.30±7.30e |
4.00—5.00 | 401.51±3.28e | 12.83±2.31d | 2.84±1.07b | 70.95±1.12d | 557.99±47.53d | 25.64±2.88e | 116.90±4.90e |
5.00—6.00 | 429.49±16.23d | 15.14±1.91c | 3.36±1.04b | 72.05±4.08d | 651.16±45.44cd | 26.78±1.81e | 155.20±28.40d |
6.00—7.00 | 442.47±13.87d | 17.40±2.30b | 4.09±0.72a | 105.11±13.29c | 668.42±25.42c | 27.72±1.46e | 167.60±17.30cd |
7.00—8.00 | 466.62±8.70d | 19.95±1.76a | 3.67±0.39b | 113.20±11.34bc | 674.43±15.62c | 27.76±0.86e | 175.40±14.90c |
8.00—9.00 | 467.86±11.96d | 20.80±2.40a | 2.99±0.46b | 114.35±17.08b | 675.89±33.15c | 30.24±1.68de | 181.20±15.40bc |
9.00—10.00 | 499.74±29.51c | 18.12±1.54a | 2.88±0.45b | 114.43±9.18b | 686.55±11.10c | 33.80±2.39cd | 191.00±17.00b |
10.00—11.00 | 509.32±20.06bc | 17.33±1.25b | 2.87±0.35b | 115.28±9.30b | 707.46±5.85b | 36.99±0.60bc | 191.10±13.70b |
11.00—12.00 | 517.05±1.09b | 17.02±0.25b | 2.70±0.38b | 123.94±20.71a | 709.51±27.38b | 38.33±0.67ab | 241.10±37.80a |
12.00—13.00 | 557.67±77.82a | 16.71±1.10c | 2.61±0.49b | 124.86±20.18a | 748.05±19.98a | 39.67±1.67a | 247.70±39.90a |
平均 | 473.09±6.80 | 18. 35±0.78 | 3.42±0.19 | 103.28±4.92 | 666.39±8.41 | 30.88±0.62 | 163.10±7.90 |
1 | IPCC.Summary for Policy Makers.Climate Change 2013:the Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R].Cambridge,UK:Cambridge University Press,2013. |
2 | Carbonell-Bojollo R, González-Sánchez E J, Veróz-González O,et al.Soil management systems and short term CO2 emissions in a clayey soil in southern Spain[J].Science of the Total Environment,2011,409:2929-2935. |
3 | Xu X R, Zhang W J, Xu M G,et al.Characteristics of differently stabilized soil organic carbon fractions in relation to long-term fertilization in Brown Earth of Northeast China[J]. Science of the Total Environment,2016,572:1101-1110. |
4 | Wu X G, Liu P F, Wegner C E,et al.Deciphering microbial mechanisms underlying soil organic carbon storage in a wheat-maize rotation system[J].Science of the Total Environment,2021,788:147798. |
5 | 潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究,2000,20(4):325-334. |
6 | 肖国举,仇正跻,张峰举,等.增温对固原半干旱区马铃薯产量和品质的影响[J].生态学报,2015,35(3):830-836. |
7 | 肖国举,张强,张峰举,等.增温对宁夏引黄灌区春小麦生产的影响[J].生态学报,2011,31(21):6588-6593. |
8 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2018:7. |
9 | 邱建军,王立刚,李虎.农田土壤有机碳含量对作物产量影响的模拟研究[J].中国农业科学,2009,42(1):154-161. |
10 | 徐明岗,张旭博,孙楠,等.农田土壤固碳与增产协同效应研究进展[J].植物营养与肥料学报,2017,23(6):1441-1449. |
11 | Xiao G J, Hu Y B, Zhang Q,et al.Impact of cultivation on soil organic carbon and carbon sequestration potential in semiarid regions of China[J].Soil Use and Management,2019,16:189-198. |
12 | 贺美,王迎春,王立刚,等.应用DNDC模型分析东北黑土有机碳演变规律及其与作物产量之间的协同关系[J].植物营养与肥料学报,2017,23(1):9-19. |
13 | Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304:1623-1627. |
14 | 赵雅雯,王金洲,王士超,等.潮土区小麦、玉米残体对土壤有机碳的贡献:基于改进的RothC模型[J].中国农业科学,2016,9(21):4160-4168. |
15 | Khoshgoftarmanesh A H, Schulin R, Chaney R L,et al.Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture:a review[J].Agron.Sustain,2010(30):83-107. |
16 | Xie Z B, Zhu J G, Liu G,et al.Soil organic carbon stocks in China and changes from 1980s to 2000s[J].Global Change Biology,2007,13(9):1989-2007. |
17 | 潘根兴,赵其国.中国农田土壤碳库演变研究: 全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384-393. |
18 | 王静怡,李晓明.近20年中国耕地数量变化趋势及其驱动因子分析[J].中国农业资源与区划,2019,40(8):171-176. |
19 | Quiroga A, Funaro D, Noellemeyer E,et al.Barley yield response to soil organic matter and texture in the Pampas of Argentina[J].Soil and Tillage Research,2006,90(1/2):63-68. |
20 | Pan G X, Smith P, Pan W N.The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J].Agriculture,Ecosystems & Environment,2008,129:344-348. |
21 | Krull E S, Skjemstad J O, Baldock J A.Functions of Soil Organicmatter and the Effect on Soil Properties[R].GRDC Report,Project CSO 00029,2004. |
22 | Kayuki C K, John B, Semalulu O,et al.Maize response to fertilizer and nitrogen use efficiency in Uganda[J].Agronomy Journal,2012,104:73-82. |
23 | McPharlin I R, Lancaster R A.Yield and quality response of crisping potatoes (Solanum tuberosum L.) to applied nitrogen[J].Journal of Plant Nutrition,2010,33(8):1195-1215. |
24 | Goffart J P, Olivier M, M.Potato Frankinet,crop nitrogen status assessment to improve N fertilization management and efficiency :past-present-future[J].Potato Research,2008,51(3/4):355-383. |
25 | Aulakh M S, Garg A K, Kabba B S.Phosphorus accumulation,leaching and residual effects on crop yields from long-term applications in the subtropics[J].Soil Use and Management,2007,23:417-427. |
26 | Lal R.Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands[J].Land Degradation and Development,2010,17(2):197-209. |
27 | Zhang X, Sun N, Wu L,et al.Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability:evidence from long-term experiments with wheat-maize cropping systems in China[J].Science of the Total Environment,2016,562:247-259. |
28 | 王振华,陈潇洁,吕德生,等.水肥耦合对加气滴灌加工番茄产量及品质的影响[J].农业工程学报,2020,36(19):66-75. |
29 | Shahid I, Christian T, Haroon Z K,et al.Maximizing maize quality,productivity and profitability through a combined use of compost and nitrogen fertilizer in a semi-arid environment in Pakistan[J].Nutrient Cycling in Agroecosystems,2017(107):197-213. |
30 | Adesoji A G, Ogunwole J O, Ojoko E A.Productivity of sorghum(Sorghum bicolor L.) under incorporated legumes and nitrogen fertilization in semi-arid environment[J].Field Crops Research,2018,2(3):105-111. |
31 | Chaudhary D P, Kumar S, Yadav O P.Nutritive value of maize:improvements,applications and constraints[J].Maize: Nutrition Dynamics and Novel Uses,2013,22:3-17. |
32 | 吕鹏,张吉旺,刘伟,等.施氮量对超高产夏玉米产量及氮素吸收利用的影响[J].植物营养与肥料学报,2011,17(4):852-860. |
33 | Hurburgh C.Corn and soybean quality affected by late season drought[J].Integrated Crop Management,2003(22):490-511. |
34 | SepaskhahA R, Barzegar M.Yield,water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment[J].Agriculture Water Management,2010,98:38-44. |
35 | El-Gizawy N.Effects of nitrogen rate and plant density on agronomic nitrogen efficiency and maize yields following wheat and faba bean[J].American-Eurasian Journal of Agricultural and Environmental Sciences,2009,5(3):378-386. |
36 | Adesoji A G.Abubakar I U,Labe D A.Influence of incorporated legumes and nitrogen fertilization on maize (Zea mays L.) nutrient uptake in a semi-arid environment[J].IOSR Journal of Agriculture and Veterinary Science,2015,8(3):1-8. |
37 | Pearson C J, Jacobs B C.Yield components and nitrogen partitioning of maize in response to nitrogen before and after anthesis[J].Australian Journal of Agriculture Research,1987,38:1001-1009. |
38 | 杨恩琼,黄建国,何腾兵,等.氮肥用量对普通玉米产量和营养品质的影响[J].植物营养与肥料学报,2009,15(3):509-513. |
39 | Sun W J, Huang Y, Zhang W,et al.Carbon sequestration and its potential in agricultural soils of China[J].Global Biogeochemical Cycles,2010,24(3):1154-1157. |
[1] | Wanyun Luo, Fubo Wang, Hui Sun. Spatial pattern evolution characteristics of high-quality green development level in the Yellow River Basin [J]. Journal of Desert Research, 2022, 42(3): 11-20. |
[2] | Zhao Yu, Qizheng Li, Peiyuan Wang, Qi Jiang. Changes of organic carbon density in desert steppe ecosystem driven by degradation and restoration [J]. Journal of Desert Research, 2022, 42(2): 215-222. |
[3] | Quanlin Ma, Wen Shang, Xinyou Wang, Jing Ma, Kejie Zhan, Duoze Wang. Influence of sand blown activity on soil organic carbon and total nitrogen in artificial Haloxylon ammodendron plantations in arid desert regions [J]. Journal of Desert Research, 2022, 42(1): 71-78. |
[4] | Baorong Xu, Yichuan Liu, Ying Dong, Gong Zhu, Yongzhong Zhang, Zhixiang Lu, Songbing Zou. Evaluation of habitat quality in Lanzhou Region based on InVEST model [J]. Journal of Desert Research, 2021, 41(5): 120-129. |
[5] | Jie Yang, Baopeng Xie, Degang Zhang. Spatial-temporal evolution of habitat quality and its influencing factors in the Yellow River Basin based on InVEST model and GeoDetector [J]. Journal of Desert Research, 2021, 41(4): 12-22. |
[6] | Juan Cui, Hao Wang, Jie Liu, Yue Wang, Lidong Lu, Jie Chen. Characteristics of dust events and their influence on air quality of Yulin, Shaanxi, China [J]. Journal of Desert Research, 2021, 41(2): 59-66. |
[7] | Yuanjie Hu, Nan Jiang. Influence of dust storm on atmospheric environment quality in Xi’an, China [J]. Journal of Desert Research, 2020, 40(6): 53-60. |
[8] | Tianyan Su, Wenjie Liu, Qiu Yang, Wei Mao. Review on response of soil carbon cycle to groundwater level change [J]. Journal of Desert Research, 2020, 40(5): 180-189. |
[9] | Wei Wei, Zhang Wending, Chen Huansheng, Ren Yuanzhe, Pi Dongqin, Wu Jianbin, Chen Tingting, Xiao Linhong, Luo Baogang, Yan Pingzhong. Influence of desertification control in Hobq Desert on air quality in Beijing-Tianjin-Hebei region: a simulation case of dust weather on 3-6, May, 2017 [J]. Journal of Desert Research, 2020, 40(1): 77-87. |
[10] | Zibibula·Simayi, Yang Shengtian, Yang Xiaodong, Wang Lei, Xiaohelaiti·Bayi. Coordination degree between urban development and water environmental quality in oasis cities around the Tarim Basin [J]. Journal of Desert Research, 2020, 40(1): 88-96. |
[11] | Zhang Zhijuan, Yi Yuhong, Chen Bin, Du Hui. Effectof Dust Weather on Urban Air Quality over Northern China in Spring of 2018 and its Weather Analysis [J]. Journal of Desert Research, 2019, 39(6): 13-22. |
[12] | Yang Hongling, Li Yulin, Ning Zhiying, Zhang Ziqian. Home-field Effects of Leaf Litter Decomposition of Dominate Sand-fixing Shrubs in the Horqin Sandy Land [J]. Journal of Desert Research, 2019, 39(5): 62-70. |
[13] | Hei Weigao, Zhan Jin, Han Dan, Yang Hongling, Li Yulin. Compatible Biomass Models for Two Dominant Sand-fixing Shrubs in Horqin Sandy Land [J]. Journal of Desert Research, 2019, 39(5): 193-199. |
[14] | Zhang Mengxu, Liu Wei, Zhu Meng, Li Ruolin. Soil Organic Carbon Storage and Distribution Patterns in the Mountainous Areas of the Hexi Region, Gansu, China [J]. Journal of Desert Research, 2019, 39(4): 64-72. |
[15] | Su Yongzhong, Yang Rong, Liu Tingna. Effects of Long-term Different Fertilization on Soil Fertility and Soil Organic Carbon Accumulation in Psamments of Oasis Farmland [J]. Journal of Desert Research, 2019, 39(3): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech