Journal of Desert Research ›› 2022, Vol. 42 ›› Issue (5): 25-35.DOI: 10.7522/j.issn.1000-694X.2022.00008
Previous Articles Next Articles
Jinqiu Wang1(), Yuanyun Xie1,2(
), Chunguo Kang3, Yunping Chi1,2, Lei Sun1, Peng Wu1, Zhenyu Wei1
Received:
2021-12-22
Revised:
2022-02-04
Online:
2022-09-20
Published:
2022-09-22
Contact:
Yuanyun Xie
CLC Number:
Jinqiu Wang, Yuanyun Xie, Chunguo Kang, Yunping Chi, Lei Sun, Peng Wu, Zhenyu Wei. Changing provenance of Harbin loess since the Middle Pleistocene: evidence from TIMA automated quantification of minerals[J]. Journal of Desert Research, 2022, 42(5): 25-35.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00008
样品号 | 深度/m | K/% | Th/10-6 | U/10-6 | 含水率/% | 剂量率/(Gy·ka-1) | 等效剂量/Gy | OSL年龄/ka | ESR年龄/ka | 14C年龄/a BP | 树轮矫正年龄/cal a BP |
---|---|---|---|---|---|---|---|---|---|---|---|
OSL-1 | 4.18 | 2.45±0.05 | 12.7±0.2 | 3.1±0.55 | 11 | 4.2±0.2 | 146.6±6.3 | 35.0±2.8 | |||
OSL-2 | 5.23 | 2.47±0.05 | 12.3±0.2 | 2.7±0.53 | 11 | 4.1±0.2 | 169.1±18.6 | 41.6±5.4 | |||
OSL-3 | 5.87 | 2.41±0.05 | 12.7±0.2 | 3.±10.53 | 10 | 4.2±0.2 | 197.8±12.0 | 47.4±4.2 | |||
ESR-1 | 28.6 | 3.22 | 12.5 | 2.13 | 18.5 | 3.51 | 1 698±139 | 484±40 | |||
ESR-2 | 30.2 | 3.16 | 12.4 | 2.08 | 23.7 | 3.19 | 1 570±201 | 492±25 | |||
ESR-3 | 30.8 | 3.02 | 12.1 | 2.17 | 36.4 | 2.52 | 1 248±78 | 495±31 | |||
14C-1 | 30 | 520±25 | 538±25 | ||||||||
14C-2 | 70 | 1 415±20 | 1 318±15 | ||||||||
14C-3 | 110 | 5 170±30 | 5 933±36 | ||||||||
14C-4 | 130 | 5 885±30 | 6 760±33 | ||||||||
14C-5 | 300 | 21 160±150 | 25 496±166 |
Table 1 OSL, ESR and 14C dating results of Huangshan profile in Harbin
样品号 | 深度/m | K/% | Th/10-6 | U/10-6 | 含水率/% | 剂量率/(Gy·ka-1) | 等效剂量/Gy | OSL年龄/ka | ESR年龄/ka | 14C年龄/a BP | 树轮矫正年龄/cal a BP |
---|---|---|---|---|---|---|---|---|---|---|---|
OSL-1 | 4.18 | 2.45±0.05 | 12.7±0.2 | 3.1±0.55 | 11 | 4.2±0.2 | 146.6±6.3 | 35.0±2.8 | |||
OSL-2 | 5.23 | 2.47±0.05 | 12.3±0.2 | 2.7±0.53 | 11 | 4.1±0.2 | 169.1±18.6 | 41.6±5.4 | |||
OSL-3 | 5.87 | 2.41±0.05 | 12.7±0.2 | 3.±10.53 | 10 | 4.2±0.2 | 197.8±12.0 | 47.4±4.2 | |||
ESR-1 | 28.6 | 3.22 | 12.5 | 2.13 | 18.5 | 3.51 | 1 698±139 | 484±40 | |||
ESR-2 | 30.2 | 3.16 | 12.4 | 2.08 | 23.7 | 3.19 | 1 570±201 | 492±25 | |||
ESR-3 | 30.8 | 3.02 | 12.1 | 2.17 | 36.4 | 2.52 | 1 248±78 | 495±31 | |||
14C-1 | 30 | 520±25 | 538±25 | ||||||||
14C-2 | 70 | 1 415±20 | 1 318±15 | ||||||||
14C-3 | 110 | 5 170±30 | 5 933±36 | ||||||||
14C-4 | 130 | 5 885±30 | 6 760±33 | ||||||||
14C-5 | 300 | 21 160±150 | 25 496±166 |
样品编号 | 方法 | 锆石 | 磷灰石 | 金红石 | 锐钛矿 | 白钛石 | 榍石 | 独居石 | 角闪石 | 电气石 | 石榴子石 | 绿帘石 | 辉石 | 钛铁矿 | 赤褐铁矿 | 磁铁矿 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HS-all-10 | 传统 | 7.28 | 0.39 | 0.33 | 0.76 | 0.93 | 3.45 | 0.06 | 12.51 | 0.11 | 1.50 | 27.53 | 2.06 | 26.31 | 6.56 | 5.47 |
TIMA | 9.93 | 0.76 | 4.20 | 0.00 | 2.51 | 6.70 | 0.34 | 5.52 | 2.82 | 1.21 | 19.14 | 0.14 | 29.48 | 0.00 | 16.46 | |
HS-all-26 | 传统 | 10.63 | 0.03 | 0.55 | 0.81 | 0.88 | 4.47 | 0.36 | 5.67 | 0.47 | 3.07 | 27.90 | 0.83 | 31.92 | 8.86 | 0.99 |
TIMA | 9.38 | 0.30 | 4.98 | 0.00 | 3.07 | 6.65 | 0.59 | 6.58 | 3.99 | 1.52 | 22.25 | 0.27 | 31.80 | 0.00 | 7.90 | |
HS-all-31 | 传统 | 6.61 | 0.16 | 0.34 | 0.96 | 0.99 | 5.11 | 0.12 | 9.17 | 0.47 | 2.00 | 23.62 | 1.41 | 27.85 | 8.81 | 7.99 |
TIMA | 5.93 | 0.72 | 3.93 | 0.00 | 3.00 | 6.46 | 0.24 | 8.89 | 3.08 | 1.42 | 22.47 | 0.29 | 24.58 | 0.00 | 17.83 | |
HS-all-36 | 传统 | 10.63 | 0.17 | 0.66 | 1.03 | 1.44 | 5.11 | 0.09 | 8.66 | 0.18 | 2.23 | 28.20 | 2.23 | 24.18 | 9.37 | 1.17 |
TIMA | 7.53 | 0.60 | 4.80 | 0.00 | 2.91 | 7.33 | 0.16 | 8.30 | 3.91 | 1.91 | 27.85 | 0.35 | 25.84 | 0.00 | 7.17 |
Table 2 Types and contents (%) of heavy minerals identified by two methods
样品编号 | 方法 | 锆石 | 磷灰石 | 金红石 | 锐钛矿 | 白钛石 | 榍石 | 独居石 | 角闪石 | 电气石 | 石榴子石 | 绿帘石 | 辉石 | 钛铁矿 | 赤褐铁矿 | 磁铁矿 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HS-all-10 | 传统 | 7.28 | 0.39 | 0.33 | 0.76 | 0.93 | 3.45 | 0.06 | 12.51 | 0.11 | 1.50 | 27.53 | 2.06 | 26.31 | 6.56 | 5.47 |
TIMA | 9.93 | 0.76 | 4.20 | 0.00 | 2.51 | 6.70 | 0.34 | 5.52 | 2.82 | 1.21 | 19.14 | 0.14 | 29.48 | 0.00 | 16.46 | |
HS-all-26 | 传统 | 10.63 | 0.03 | 0.55 | 0.81 | 0.88 | 4.47 | 0.36 | 5.67 | 0.47 | 3.07 | 27.90 | 0.83 | 31.92 | 8.86 | 0.99 |
TIMA | 9.38 | 0.30 | 4.98 | 0.00 | 3.07 | 6.65 | 0.59 | 6.58 | 3.99 | 1.52 | 22.25 | 0.27 | 31.80 | 0.00 | 7.90 | |
HS-all-31 | 传统 | 6.61 | 0.16 | 0.34 | 0.96 | 0.99 | 5.11 | 0.12 | 9.17 | 0.47 | 2.00 | 23.62 | 1.41 | 27.85 | 8.81 | 7.99 |
TIMA | 5.93 | 0.72 | 3.93 | 0.00 | 3.00 | 6.46 | 0.24 | 8.89 | 3.08 | 1.42 | 22.47 | 0.29 | 24.58 | 0.00 | 17.83 | |
HS-all-36 | 传统 | 10.63 | 0.17 | 0.66 | 1.03 | 1.44 | 5.11 | 0.09 | 8.66 | 0.18 | 2.23 | 28.20 | 2.23 | 24.18 | 9.37 | 1.17 |
TIMA | 7.53 | 0.60 | 4.80 | 0.00 | 2.91 | 7.33 | 0.16 | 8.30 | 3.91 | 1.91 | 27.85 | 0.35 | 25.84 | 0.00 | 7.17 |
采样点 | 锆石 | 磷灰石 | 金红石 | 锐钛矿 | 白钛石 | 榍石 | 独居石 | 角闪石 | 电气石 | 石榴子石 | 绿帘石 | 辉石 | 钛铁矿 | 赤褐铁矿 | 磁铁矿 | 磁钛铁矿 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
上部地层 | 7.30 | 0.40 | 0.30 | 0.80 | 0.90 | 3.50 | 0.10 | 12.50 | 0.10 | 1.50 | 27.60 | 2.10 | 26.30 | 6.60 | 5.50 | 0.00 |
松嫩沙地 | 6.70 | 1.40 | 0.70 | 0.20 | 0.80 | 3.70 | 0.10 | 17.90 | 0.40 | 1.30 | 23.20 | 0.70 | 11.70 | 13.70 | 12.70 | 0.00 |
浑善达克沙地 | 9.70 | 1.30 | 1.00 | 1.00 | 0.90 | 0.80 | 0.60 | 8.70 | 3.40 | 6.40 | 11.00 | 9.20 | 21.10 | 3.60 | 6.60 | 9.20 |
科尔沁沙地 | 7.10 | 1.90 | 2.50 | 1.40 | 0.70 | 1.90 | 0.80 | 7.20 | 1.90 | 12.80 | 17.90 | 9.40 | 23.60 | 5.40 | 0.10 | 0.00 |
下部地层 | 9.30 | 0.10 | 0.50 | 0.90 | 1.10 | 4.90 | 0.20 | 7.80 | 0.40 | 2.40 | 26.60 | 1.50 | 28.00 | 9.00 | 3.40 | 0.00 |
Table 3 Comparison of heavy mineral content (%) between Harbin loess and northeast sandy land
采样点 | 锆石 | 磷灰石 | 金红石 | 锐钛矿 | 白钛石 | 榍石 | 独居石 | 角闪石 | 电气石 | 石榴子石 | 绿帘石 | 辉石 | 钛铁矿 | 赤褐铁矿 | 磁铁矿 | 磁钛铁矿 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
上部地层 | 7.30 | 0.40 | 0.30 | 0.80 | 0.90 | 3.50 | 0.10 | 12.50 | 0.10 | 1.50 | 27.60 | 2.10 | 26.30 | 6.60 | 5.50 | 0.00 |
松嫩沙地 | 6.70 | 1.40 | 0.70 | 0.20 | 0.80 | 3.70 | 0.10 | 17.90 | 0.40 | 1.30 | 23.20 | 0.70 | 11.70 | 13.70 | 12.70 | 0.00 |
浑善达克沙地 | 9.70 | 1.30 | 1.00 | 1.00 | 0.90 | 0.80 | 0.60 | 8.70 | 3.40 | 6.40 | 11.00 | 9.20 | 21.10 | 3.60 | 6.60 | 9.20 |
科尔沁沙地 | 7.10 | 1.90 | 2.50 | 1.40 | 0.70 | 1.90 | 0.80 | 7.20 | 1.90 | 12.80 | 17.90 | 9.40 | 23.60 | 5.40 | 0.10 | 0.00 |
下部地层 | 9.30 | 0.10 | 0.50 | 0.90 | 1.10 | 4.90 | 0.20 | 7.80 | 0.40 | 2.40 | 26.60 | 1.50 | 28.00 | 9.00 | 3.40 | 0.00 |
1 | 刘东生.黄土与环境[M].北京:科学出版社,1985. |
2 | Xie Y Y, Kang C G, Chi Y P,et al.The loess deposits in Northeast China:the linkage of loess accumulation and geomorphic-climatic features at the easternmost edge of the Eurasian loess belt[J].Journal of Asian Earth Sciences,2019,181:103914. |
3 | Nie J, Peng W, Moller A,et al.Provenance of the upper Miocene-Pliocene Red Clay deposits of the Chinese loess plateau[J].Earth & Planetary Science Letters,2014,407:35-47. |
4 | Kapp P, Pullen A, Pelletier J D,et al.From dust to dust:quaternary wind erosion of the Mu Us Desert and Loess Plateau[J].Geology,2015,43(9):253-259. |
5 | Kapp P, Pelletier J D, Rohrmann A,et al.Wind erosion in the Qaidam basin,central Asia:implications for tectonics,paleoclimate,and the source of the Loess Plateau[J].GSA Today,2011,21(4/5):4-10. |
6 | 孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程[J].第四纪研究,2004,24(2):175-183. |
7 | Xiao G, Zong K, Li G,et al.Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J].Geophysical Research Letters,2012,39(20):20715. |
8 | Guo Z T, Ruddiman W F, Hao Q Z,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002,416(6877):159-163. |
9 | Lu H Y, Yi S W, Xu Z W,et al.Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J].Chinese Science Bulletin,2013,58(23):2775-2783. |
10 | 万琳琪,朱丽东,彭淑贞,等.鲁中山地北麓黄土-古土壤黏土矿物组成及古环境意义[J].第四纪研究,2020,40(6):1522-1530. |
11 | Sun J M.Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J].Earth and Planetary Science Letters,2002,203(3):845-859. |
12 | Sun J M.Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma:implications for provenance change[J].Earth and Planetary Science Letters,2005,240(2):454-466. |
13 | 杜慧荣,谢远云,康春国,等.哈尔滨黄土的粒度与地球化学特征及其对粉尘物源的指示[J].中国沙漠,2020,40(1):64-76. |
14 | 谢远云,孙磊,康春国,等.松嫩沙地Sr-Nd同位素组成特征[J].沉积学报,2020,38(4):771-780. |
15 | 张诚.阿拉善沙漠风积砂重矿物组成及物源分析[D].兰州:兰州大学,2020. |
16 | 王嘉新,谢远云,康春国,等.哈尔滨荒山岩芯重矿物特征对松花江第四纪水系演化的指示[J].第四纪研究,2020,40(1):79-94. |
17 | 陈倩,宋文磊,杨金昆,等.矿物自动定量分析系统的基本原理及其在岩矿研究中的应用:以捷克泰思肯公司TIMA为例[J].矿床地质,2021,40(2):345-368. |
18 | HrsTka T, GOTTlIeb P, Skála R,et al.Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA)[J].Journal of Geosciences,2018,63(1):47-63. |
19 | 谢小敏,李利,袁秋云,等.应用 TIMA 分析技术研究 Alum 页岩有机质和黄铁矿粒度分布及沉积环境特征[J].岩矿测试,2021,40(1):50-60. |
20 | Haberlah D, Williams M A J, Halverson G,et al.Loess and floods:high-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges,semi-arid South Australia[J].Quaternary Science Reviews,2010,29(19):2673-2693. |
21 | Martin R S, Mather T A, Pyle D M,et al.Composition-resolved Size Distributions of Volcanic Aerosols in the Mt.Etna Plumes[M].Hoboken, New Jersey,USA:John Wiley & Sons,2008,113:D17211. |
22 | Speirs J C, McGowan H A, Neil D T.Polar eolian sand transport:grain characteristics determined by an automated scanning electron microscope (QEMSCAN & reg)[J].Arctic,Antarctic,and Alpine Research,2008,40(4):731-743. |
23 | Meyer M C, Austin P, Tropper P.Quantitative evaluation of mineral grains using automated SEM-EDS analysis and its application potential in optically stimulated luminescence dating[J].Radiation Measurements,2013,58:1-11. |
24 | 吴鹏,谢远云,康春国,等.早更新世晚期松花江水系袭夺:地球化学和沉积学记录[J].地质学报,2020,94(10):3144-3160. |
25 | 王璟璐.松花江哈尔滨段阶地的研究[J].地理科学,1993(1):87-90. |
26 | 王永,董进,杨劲松.哈尔滨荒山剖面第四纪地层研究[J].地球科学,2020,45(7):2662-2672. |
27 | 张月馨,迟云平,谢远云,等.中更新世以来哈尔滨黄土有机碳同位素组成及其古气候意义[J].地球学报,2020,41(4):525-534. |
28 | 尹金辉,郑勇刚,刘粤霞.古地震14C年龄的日历年代校正[J].地震地质,2005(4):678-688. |
29 | 中国地质科学院地矿所.砂矿物鉴定手册[M].北京:地质出版社,1977:58-63. |
30 | 沈丽琪.沉积岩重矿物研究中的几个重要概念及其应用[J].中国科学B辑,1985(1):70-78. |
31 | 马婉仙.重砂测量与分析[M].北京:地质出版社,1990. |
32 | Vermeesch P.Multi-sample comparison of detrital age distributions[J].Chemical Geology,2013,341(2):140-146. |
33 | 康春国,李长安,谢远云,等.哈尔滨地区风尘黄土重矿物特征及物源分析[J].自然灾害学报,2011,20(4):43-51. |
34 | Zhang X J, Pease V, Omma J,et al.Provenance of Late Carboniferous to Jurassic sandstones for southern Taimyr,Arctic Russia:a comparison of heavy mineral analysis by optical and QEMSCAN methods[J].Sedimentary Geology,2015,329:166-176. |
35 | Zhu B, Zeng Z.Heavy mineral compositions of sediments in the southern Okinawa Trough and their provenance-tracing implication[J].Minerals,2021,11(11):1191. |
36 | Crouvi O, Amit R, Enzel Y,et al.Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert,Israel[J].Quaternary Research,2008,70(2):275-282. |
37 | Tsoar H, Pye K.Dust transport and the question of desert loess formation[J].Sedimentology,1987,34(1):139-153. |
38 | Sun D H.Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of Northern China[J].Global & Planetary Change,2004,41(1):63-80. |
39 | Sun D H, Bloemendal J, Rea D K,et al.Bimodal grain-size distribution of Chinese loess,and its palaeoclimatic implications[J].Catena,2004,55(3):325-340. |
40 | 林洪,李凤杰,李磊,等.柴达木盆地北缘古近系重矿物特征及物源分析[J].天然气地球科学,2014,25(4):532-541. |
41 | 何苗,姜勇,张恒,等.准噶尔盆地西北缘三叠系重矿物特征及其物源指示意义[J].地质论评,2019,65(2):464-476. |
42 | Sevastjanova I, Hall R, Alderton D.A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia[J].Sedimentary Geology,2012,280:179-194. |
43 | 陈心怡,黄奇瑜,邵磊.福建闽江和九龙江现代沉积物重矿物特征及其物源意义[J].古地理学报,2018,20(4):637-650. |
44 | 李伟歌.滇东南中三叠世富宁皈朝盆地物源分析[D].成都:成都理工大学,2020. |
45 | 康春国,李长安,王节涛,等.江汉平原沉积物重矿物特征及其对三峡贯通的指示[J].地球科学(中国地质大学学报),2009,34(3):419-427. |
46 | 许苗苗,魏晓椿,杨蓉,等.重矿物分析物源示踪方法研究进展[J].地球科学进展,2021,36(2):154-171. |
47 | Zhang C, Li Z L, Chen Q J.Provenance of eolian sands in the Ulan Buh Desert,northwestern China,revealed by heavy mineral assemblages[J].Catena,2020,193:104624. |
48 | 孙东怀,鹿化煜.晚新生代黄土高原风尘序列的粒度和沉积速率与中国北方大气环流演变[J].第四纪研究,2007,27(2):251-262. |
49 | 孙有斌,安芷生.晚新近纪亚洲内陆的干旱化趋势[J].地学前缘,2002(2):285-286. |
50 | Ding Z L, Derbyshire E, Yang S L,et al.Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J].Earth and Planetary Science Letters,2005,237(1/2):45-55. |
51 | Wu P, Xie Y Y, Chi Y P,et al.Loess accumulation in Harbin with implications for late Quaternary aridification in the Songnen Plain,Northeast China[J].Palaeogeography Palaeoclimatology Palaeoecology,2021,570(1):110365. |
52 | 赵倩,谢远云,郝冬梅,等.松嫩平原中更新世以来气候干旱化:来自哈尔滨黄土记录[J].沉积学报,2021,doi:10.14027/j.issn.1000-0550.2021.054 . |
53 | 王庆,杨景春.松辽分水岭东段白土山组成因与时代[J].地层学杂志,1995,19(4):287-290. |
54 | 史正涛,方小敏,宋友桂,等.天山北坡黄土记录的中更新世以来干旱化过程[J].海洋地质与第四纪地质,2006,26(3):109-114. |
55 | 熊尚发,丁仲礼,刘东生.北京邻区 1.2 Ma以来黄土沉积及其对东部沙漠扩张的指示[J].海洋地质与第四纪地质,1999,19(3):70-76. |
56 | 陈骏,李高军.亚洲风尘系统地球化学示踪研究[J].中国科学:地球科学,2011,41(9):1211-1232. |
57 | Xie Y Y, Liu L, Kang C G,et al.Sr-Nd isotopic characteristics of the northeast sandy land,China and their implications for tracing sources of regional dust[J].Catena,184:104303-104303. |
[1] | Fenliang Liu, Hongshan Gao, Baotian Pan, Zongmeng Li. The genesis, age and its paleoclimatic significance of loess-like sediments in the Huatan section of the dry-hot valley of the Jinsha River [J]. Journal of Desert Research, 2022, 42(4): 60-70. |
[2] | Xuegang Mao, Lijuan Zhao. Rock magnetic properties of deserts, gobi and loess topsoils and their implications in models of magnetic susceptibility [J]. Journal of Desert Research, 2022, 42(2): 183-193. |
[3] | Fangming Zeng, Hongpan Xue. The dataset of elemental compositions of the late Pleistocene loess-paleosol deposits on the northeastern Tibetan Plateau [J]. Journal of Desert Research, 2021, 41(6): 262-264. |
[4] | Rongrong Qiao, Yan Han, Shuxin Ji, Chunyuan Dong, Aojie Wang, Xueli Chang. Analysis of soil erosion in loess area of sandstone based on terrain index [J]. Journal of Desert Research, 2021, 41(5): 175-182. |
[5] | Ziting Wang, Lei Yang, Guang Li, Chunshan Chai, Yangdong Zhang, Donghao Liu. Distribution and diversity of herbage under Caragana korshinskii plantation at hillslope scale in the semi-arid loess hilly region [J]. Journal of Desert Research, 2021, 41(2): 120-128. |
[6] | Fangming Zeng, Hongpan Xue. Elemental compositions of the late Quaternary loess-paleosol on the northeastern Qinghai-Tibet Plateau and their implications for provenance [J]. Journal of Desert Research, 2020, 40(6): 105-117. |
[7] | Du Huirong, Xie Yuanyun, Kang Chunguo, Chi Yunping, Wang Jiaxin, Sun Lei. Grain-size and geochemical compositions of the Harbin loess deposits and their implications for eolian dust provenances [J]. Journal of Desert Research, 2020, 40(1): 64-76. |
[8] | Wang Ziting, Li Guang, Cai Guojun, Chai Chunshan, Zhang Yangdong, Qi Jianli. Response of household income to Grain-for-Green Project in hilly region of Loess Plateau: a case study of Longtan watershed [J]. Journal of Desert Research, 2020, 40(1): 223-232. |
[9] | Lei Chen, Pang Jiangli, Huang Chunchang, Zha Xiaochun, Zhou Yali, Wen Ruiyan, Chui Yuda. Composition Characteristics and Significance of Rb, Sr and Ba of Fanjiacheng Loess-paleosol Profile in the Upper Reaches of the Weihe River [J]. Journal of Desert Research, 2019, 39(6): 90-98. |
[10] | Li Jiyan, Zhou Ling, Liu Yi, Zhang Qian, Cai Yingying, Zhang Baogui. Grain-size and Geochemical Element Composition for Topsoil in Northwestern Shanxi, China [J]. Journal of Desert Research, 2019, 39(5): 155-162. |
[11] | Wen Haiyan, Wu Shujuan, Fu Hua. Influence of Nitrogen Addition on Net Ecosystem Carbon Exchange of Steppe in the Loess Plateau [J]. Journal of Desert Research, 2019, 39(3): 34-40. |
[12] | Sun Lifan, Shi Xingmin, Wang Lu. Assessments of the Efficacy of Farmers' Adaptive Behaviors to Climate Change [J]. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 428-436. |
[13] | Wang Youjun, Jia Jia, Gao Fuyuan, Lu Hao, Liu Hao, Xia Dunsheng. Magnetic Characteristics of Aeolian Sand and Ancient Underwater Sediments and Their Implications in Alxa Region of China [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(4): 626-634. |
[14] | Lyu Anqi, Lu Huayu, Zeng Lin, Yi Shuangwen, Zhuo Haixin, Xu Zhiwei, Zhang Wenchao. Evolution of Horqin and Otindag Dune Fields since 1.08 Ma Recorded by Grain Size of Loess in Chifeng,Northeastern China [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(4): 659-665. |
[15] | Wang Bin, Zeng Lin, Zhao Wancang, Zhang Wenfang, Duan Keqin. New Research Progress of the Transport Dynamics and the Accumulation Factor of the Aeolian Dust in Chinese Loess Plateau [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(2): 237-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech