Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (2): 143-150.DOI: 10.7522/j.issn.1000-694X.2023.00093
Yuanzhong Zhu1,2(), Wenda Huang1(
), Hailun Yu1, Yuanzheng He1,2, Huaihai Wang1,2, Shangbin Shi1,2, Zhiqiang Kou3
Received:
2023-07-13
Revised:
2023-10-27
Online:
2024-03-20
Published:
2024-03-19
Contact:
Wenda Huang
CLC Number:
Yuanzhong Zhu, Wenda Huang, Hailun Yu, Yuanzheng He, Huaihai Wang, Shangbin Shi, Zhiqiang Kou. Leaf functional traits of plant community with different hydrothermal gradients in Horqin sandy grassland[J]. Journal of Desert Research, 2024, 44(2): 143-150.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00093
采样点 | 优势种 |
---|---|
扎鲁特旗 | 砂蓝刺头(Echinops gmelini)、大果虫实(Corispermum macrocarpum)、猪毛蒿(Artemisia scoparia)、狗尾草(Setaria viridis) |
阿鲁科尔沁旗 | 砂蓝刺头(E. gmelini)、糙隐子草(Cleistogenes squarrosa)、猪毛蒿(A. scoparia)、达乌里胡枝子(Lespedeza davurica) |
奈曼旗 | 大果虫实(C. macrocarpum)、狗尾草(S. viridis)、达乌里胡枝子(L. davurica)、野麻子(Datura stramonium) |
科尔沁左翼后旗 | 尖头叶藜(Chenopodium acuminatum)、狗尾草(S. viridis)、虎尾草(Chloris virgata)、砂蓝刺头(E.gmelini) |
翁牛特旗 | 猪毛蒿(A. scoparia)、达乌里胡枝子(L. davurica)、砂蓝刺头(E. gmelini)、蒺藜(Tribulus terrestris)、五星蒿(Bassia dasyphylla) |
Table 1 Vegetation characteristics of study sites
采样点 | 优势种 |
---|---|
扎鲁特旗 | 砂蓝刺头(Echinops gmelini)、大果虫实(Corispermum macrocarpum)、猪毛蒿(Artemisia scoparia)、狗尾草(Setaria viridis) |
阿鲁科尔沁旗 | 砂蓝刺头(E. gmelini)、糙隐子草(Cleistogenes squarrosa)、猪毛蒿(A. scoparia)、达乌里胡枝子(Lespedeza davurica) |
奈曼旗 | 大果虫实(C. macrocarpum)、狗尾草(S. viridis)、达乌里胡枝子(L. davurica)、野麻子(Datura stramonium) |
科尔沁左翼后旗 | 尖头叶藜(Chenopodium acuminatum)、狗尾草(S. viridis)、虎尾草(Chloris virgata)、砂蓝刺头(E.gmelini) |
翁牛特旗 | 猪毛蒿(A. scoparia)、达乌里胡枝子(L. davurica)、砂蓝刺头(E. gmelini)、蒺藜(Tribulus terrestris)、五星蒿(Bassia dasyphylla) |
因素 | df | 株高 | 叶面积 | 叶厚度 | 比叶面积 | 叶干物质含量 | 叶组织密度 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | ||
温度梯度 | 2 | 3.395 | 0.042 | 5.529 | 0.007 | 7.362 | 0.002 | 1.133 | 0.330 | 0.886 | 0.419 | 3.095 | 0.055 |
降水梯度 | 2 | 5.038 | 0.008 | 3.609 | 0.034 | 34.250 | <0.001 | 4.484 | 0.016 | 32.731 | <0.001 | 5.236 | 0.009 |
Table 2 Effects of hydrothermal conditions on community functional traits in the Horqin sandy grassland
因素 | df | 株高 | 叶面积 | 叶厚度 | 比叶面积 | 叶干物质含量 | 叶组织密度 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | ||
温度梯度 | 2 | 3.395 | 0.042 | 5.529 | 0.007 | 7.362 | 0.002 | 1.133 | 0.330 | 0.886 | 0.419 | 3.095 | 0.055 |
降水梯度 | 2 | 5.038 | 0.008 | 3.609 | 0.034 | 34.250 | <0.001 | 4.484 | 0.016 | 32.731 | <0.001 | 5.236 | 0.009 |
指标 | 叶面积 | 叶厚度 | 比叶 面积 | 叶干物质含量 | 叶组织密度 |
---|---|---|---|---|---|
株高 | 0.149 | -0.234* | 0.364** | -0.214 | -0.072 |
叶面积 | -0.019 | 0.195 | -0.314** | -0.426** | |
叶厚度 | -0.319** | 0.340** | -0.229* | ||
比叶面积 | -0.394** | -0.198 | |||
叶干物质含量 | 0.460** |
Table 3 Correlation among community functional traits among hydrothermal gradients in the Horqin sandy grassland
指标 | 叶面积 | 叶厚度 | 比叶 面积 | 叶干物质含量 | 叶组织密度 |
---|---|---|---|---|---|
株高 | 0.149 | -0.234* | 0.364** | -0.214 | -0.072 |
叶面积 | -0.019 | 0.195 | -0.314** | -0.426** | |
叶厚度 | -0.319** | 0.340** | -0.229* | ||
比叶面积 | -0.394** | -0.198 | |||
叶干物质含量 | 0.460** |
植被特征 | 解释方差 | 因子 | 解释率/% | F | P | RDA1 | RDA2 |
---|---|---|---|---|---|---|---|
群落功能性状 | 解释方差 | 49.92 | 4.74 | ||||
解释方差(累积) | 49.92 | 54.66 | |||||
年均气温 | 43.4 | 5 | 0.006 | ||||
年降水量 | 11.2 | 1.3 | 0.276 |
Table 4 The variance correlative explanation rate between community functional traits and hydrothermal factor
植被特征 | 解释方差 | 因子 | 解释率/% | F | P | RDA1 | RDA2 |
---|---|---|---|---|---|---|---|
群落功能性状 | 解释方差 | 49.92 | 4.74 | ||||
解释方差(累积) | 49.92 | 54.66 | |||||
年均气温 | 43.4 | 5 | 0.006 | ||||
年降水量 | 11.2 | 1.3 | 0.276 |
1 | IPCC.Climate change 2013:The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge,UK: Cambridge University Press,2014. |
2 | Fraser E D, Dougill A J, Hubacek K,et al.Assessing vulnerability to climate change in dryland livelihood systems: conceptual challenges and interdisciplinary solutions[J].Ecology and Society,2011,16(3):3. |
3 | Huang J, Li Y, Fu C,et al.Dryland climate change: recent progress and challenges[J].Reviews of Geophysics,2017,55(3):719-778. |
4 | McGill B J, Enquist B J, Weiher E,et al.Rebuilding community ecology from functional traits[J].Trends in Ecology Evolution,2006,21(4):178-185. |
5 | Diaz S, Lavore l S, de Bello F,et al.Incorporating plant functional diversity effects in ecosystem service assessments[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104:20684-20689. |
6 | Mouillot D, Graham N A J, Villeger S,et al.A functional approach reveals community responses to disturbances[J].Trends in Ecology and Evolution,2013,28:167-177. |
7 | Nunes A, Kobel M, Pinho P,et al.Which plant traits respond to aridity?A critical step to assess functional diversity in Mediterranean drylands[J].Agricultural and Forest Meteorology,2017,239:176-184. |
8 | Violle C, Reich P B, Pacala S W,et al.The emergence and promise of functional biogeography[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111:13690-13696. |
9 | 盘远方,陈兴彬,姜勇,等.桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J].生态学报,2018,38(5):1581-1589. |
10 | Sandra D, Casanoves C F.Plant functional traits and environmental filters at a regional scale[J].Journal of Vegetation Science,1998,9(1):113-122. |
11 | Reich P B, Peter B,Ellsworth,et al.Generality of leaf traits relationship: a test across six biomes[J].Ecology,1999,80(6):19551969. |
12 | 施宇,温仲明,龚时慧,等.黄土丘陵区植物功能性状沿气候梯度的变化规律[J].水土保持研究,2012,19(1):107-111. |
13 | Cornwell W K, Bhaskar R, Sack L,et al.Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs.low precipitation[J].Functional Ecology,2007,21(6):1063-1071. |
14 | 李永华,卢琦,吴波,等.干旱区叶片形态特征与植物响应和适应的关系[J].植物生态学报,2012,36(1):88-98. |
15 | Wright I J, Reich P B, Cornelissen J H C,et al.Modulation of leaf economic traits and trait relationships by climate[J].Global Ecology and Biogeography,2005,14(5):411-421. |
16 | 吴旭东,季波,何建龙,等.控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响[J].生态学报,2021,41(7):2719-2727. |
17 | 魏海霞,霍艳玲,周忠科,等.唐古特白刺叶功能性状沿气候梯度的变异特征[J].生态学报,2022,42(20):8343-8351. |
18 | 赵新风,徐海量,张鹏,等.养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响[J].植物生态学报,2014,38(2):134-146. |
19 | Garnier E, Laurent G, Bellmann A,et al.Consistency of species ranking based on functional leaf traits [J].New Phytologist,2001,152(1):69-83. |
20 | Shipley B, Vu T T.Dry matter content as a measure of dry matter concentration in plants and their parts[J].New Phytologist,2002,153(2):359-364. |
21 | 龚时慧,温仲明,施宇.延河流域植物群落功能性状对环境梯度的响应[J].生态学报,2011,31(20):6088-6097. |
22 | 詹瑾,韩丹,杨红玲,等.科尔沁沙地植被恢复过程中群落组成及多样性演变特征[J].中国沙漠,2022,42(2):194-206. |
23 | 赵丽娅,钟韩珊,齐开,等.围封和放牧对科尔沁沙地植物群落种间关联的影响[J].生态学报,2021,41(9):3724-3733. |
24 | 李金霞,史新强.内蒙古扎鲁特旗1961-2000年气候演变趋势及特征分析[J].阴山学刊(自然科学版),2009,23(2):43-49. |
25 | 王海云,阿拉腾图娅,乌敦.农林牧交错典型区近20年的林地变化及其驱动因素分析:以阿鲁科尔沁旗为例[J].内蒙古林业科技,2011,37(2):42-45. |
26 | 包慧娟,郭佳,闫丽.科尔沁沙地基于生态足迹模型的沙漠化成因分析:以奈曼旗为例[J].干旱区资源与环境,2010,24(2):126-131. |
27 | 李燕,乌兰图雅.科尔沁沙地林地适宜性评价:以科尔沁左翼后旗为例[J].水土保持研究,2011,18(6):236-244. |
28 | 郭丽.翁牛特旗土地荒漠化成因分析及治理措施[J].赤峰学院学报(自然科学版),2011,27(7):76-78. |
29 | 宋彦涛,王平,周道玮.植物群落功能多样性计算方法[J].生态学杂志,2011,30(9):2053-2059. |
30 | 王鑫,杨磊,赵倩,等.黄土高原典型小流域草地群落功能性状对土壤水分的响应[J].生态学报,2020,40(8):2691-2697. |
31 | 刘晓娟,马克平.植物功能性状研究进展[J].中国科学:生命科学,2015,45(4):325-339. |
32 | Givnish T J, Burkhardt E L, Happel R E,et al.Carnivory in the bromeliad Brocchinia reducta,with a cost/benefit model for the general restriction of carnivorous plants to sunny,moist,nutrient-poor habitats[J].The American Naturalist,1984,124(4):479-497. |
33 | Wright I J,DongN,MaireV,et al.Global climatic drivers of leaf size[J].Science,2017,357(6354):917-921. |
34 | 杨继鸿,李亚楠,卜海燕,等.青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J].植物生态学报,2019,43(10):863-876. |
35 | 高景,王金牛,徐波,等.不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J].植物生态学报,2016,40(8):775-787. |
36 | Maharjan S K, Poorter L, Holmgren M,et al.Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient[J].Biotropica,2011,43(5):552-561. |
37 | Turner I M.Sclerophylly: primarily protective?[J].Functional Ecology,1994,8(6):669-675. |
38 | Kuhner A, Kleyer M.A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility[J].Journal of Vegetation Science,2008,19(5):681-692. |
39 | Soliveres S, Maestre F T, Bowker M A,et al.Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands[J].Perspectives in Plant Ecology,Evolution and Systematics,2014,16(4):164-173. |
40 | 王常顺,汪诗平.植物叶片性状对气候变化的响应研究进展[J].植物生态学报,2015,39(2):206-216. |
41 | 雷添杰,张亚珍,武建军,等.干旱对草地生态系统影响研究进展[J].水利水电技术,2020,51(7):1-9. |
42 | Westoby M, Falster D S, Moles A T,et al.Plant ecological strategies:some leading dimensions of variation between species[J].Annual Review of Ecology Systematics,2020,33:125-159. |
43 | Wright I J, Ackerly D D, Frans B,et al.Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests[J].Annals of Botany,2007,99:1003-1015. |
44 | Meng T T, Wang H, Harrison S,et al.Responses of leaf traits to climatic gradients:adaptive variation versus compositional shifts[J].Biogeosciences,2015,12:5339-5352. |
45 | Yang Y Z, Wang H, Harrison S,et al.Quantifying leaf-trait covariation and its controls across climates and biomes[J].New Phytologist,2019,221:155-168. |
46 | Cui E, Weng E, Yan E,et al.Robust leaf trait relationships across species under global environmental changes[J].Nature Communications,2020,11:2999. |
[1] | Jing Zhang, Xiaoan Zuo, Peng Lv. Effects of nutrient and water content on leaf nitrogen recovery efficiency of dominant plants in sandy grasslands [J]. Journal of Desert Research, 2024, 44(1): 161-169. |
[2] | Huaihai Wang, Wenda Huang, Yuanzheng He, Yayi Niu, Yuanzhong Zhu. Effects of short-term warming and precipitation reduction on soil microbial biomass carbon, nitrogen and enzyme activity in sandy grassland [J]. Journal of Desert Research, 2022, 42(3): 274-281. |
[3] | Xiaolong Zhao, Yuhong Xie, Xujun Ma, Shaokun Wang. Vegetation structure and its relationship with soil physicochemical properties in restoring sandy grassland in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(2): 134-141. |
[4] | Wang Mingming, Liu Xinpin, Li Yulin, Chelmeg, Luo Yongqing, Sun Shanshan, Wei Jing. Soil Moisture Dynamic under Different Plant Coverages in Sandy Grassland during Growing Season [J]. Journal of Desert Research, 2019, 39(5): 54-61. |
[5] | Xiong Bingqiao, Zhao Liya, Gao Dandan. Effect of Enclosure on the Structure of Plant Community in Degraded Sandy Grasslands of Eastern Inner Mongolia [J]. JOURNAL OF DESERT RESEARCH, 2018, 38(2): 324-328. |
[6] | Zhang Jianpeng, Li Yuqiang, Zhao Xueyong, Zhang Tonghui, She Qiannan, Liu Min, Wei Shuilian. Effects of Exclosure on Soil Physicochemical Properties and Carbon Sequestration Potential Recovery of Desertified Grassland [J]. JOURNAL OF DESERT RESEARCH, 2017, 37(3): 491-499. |
[7] | Mao Wei, Li Yulin, Sun Dianchao, Wang Shaokun. Aboveground Biomass Differentiations of Different Functional Group Species after Nitrogen and Snow Addition Altered Community Productivity of Sandy Grassland [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(1): 27-33. |
[8] | Sun Dianchao, Li Yulin, Zhao Xueyong, Luo Yayong, Bi jingdong. Effects of Grazing and Enclosure on net Ecosystem Carbon Exchange in the Horqin Sandy Grassland [J]. JOURNAL OF DESERT RESEARCH, 2016, 36(1): 93-102. |
[9] | Wang Shaokun, Zhao Xueyong, Huang Wenda, Li Yuqiang, Yue Xiangfei, Zhang Lamei. Isolation and Identification of Cellulose Decomposing Fungi and Their Decomposition Ability in the Horqin Sandy Grassland [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(6): 1584-1591. |
[10] | Sun Dianchao, Li Yulin, Zhao Xueyong, Mao Wei, Yue Xiangfei. Effects of Grazing and Enclosure on Soil Respiration Rate in the Horqin Sandy Grassland [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(6): 1620-1627. |
[11] | Yin Ling, Zhang A. MunkhDalai, Cheng Yonghui, Zhao Jiaming, Jin Lining, Hai Jun, Barisi, Qi Xiaoyan, Qu Jianxin. Impacts of Off-road Vehicle Traffic on Top Soil Physical and Mechanical Property in the Hulunbuir Sandy Grassland, Inner Mongolia, China [J]. JOURNAL OF DESERT RESEARCH, 2015, 35(5): 1177-1182. |
[12] | LI Yu-lin, CHEN Jing, CUI Duo, WANG Xin-yuan, ZHAO Xue-yong. Effects of Warming on Soil Nitrogen Mineralization under Different Soil Moisture Conditions in the Horqin Sandy Grassland [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(6): 1775-1781. |
[13] | Huercha1,2, WANG Xiao-jiang1, ZHANG Wen-jun1, LIU Yong-hong1, HAI Long1, ZHANG Lei1, Sulenggaowa3. Analysis on Spatial Pattern of Blowouts in Otindag Sandy Grassland Based on ALOS Data [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(3): 662-667. |
[14] | ZUO Xiao-an, ZHAO Xue-yong, ZHANG Tong-hui, WANG Shao-kun, LUO Ya-yong, ZHOU Xin. Seasonal Changes of the Relationship between Species Richness and Community Biomass in Grassland under Grazing and Exclosure in Horqin Sandy Land, Northern China [J]. JOURNAL OF DESERT RESEARCH, 2013, 33(2): 501-507. |
[15] | LI Shuang-quan, HA Si, DU Hui-shi, ZHANG Ping, WU Xia, YANG Yi. Interaction between Airflow and Shape of Saucer Blowout in Sandy Grassland [J]. JOURNAL OF DESERT RESEARCH, 2012, 32(5): 1201-1209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech