Journal of Desert Research ›› 2024, Vol. 44 ›› Issue (6): 70-78.DOI: 10.7522/j.issn.1000-694X.2024.00049
Previous Articles Next Articles
Hongji Zhou1(), Fanmin Mei1(
), Mengji Pu1, Chuan Lin1, Jin Su2, Jinguang Chen3
Received:
2024-03-11
Revised:
2024-05-12
Online:
2024-11-20
Published:
2024-12-06
Contact:
Fanmin Mei
CLC Number:
Hongji Zhou, Fanmin Mei, Mengji Pu, Chuan Lin, Jin Su, Jinguang Chen. Ensemble models for identifying automatically aeolian saltating tracks driven by datasets[J]. Journal of Desert Research, 2024, 44(6): 70-78.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2024.00049
变量 | 定义 |
---|---|
瞬时水平速度的平均值(m·s-1) | |
瞬时垂直速度的平均值(m·s-1) | |
瞬时合速度的平均值(m·s-1) | |
轨迹抛物线方程拟合曲线的决定系数, |
Table 1 Parameterized features of saltating track samples
变量 | 定义 |
---|---|
瞬时水平速度的平均值(m·s-1) | |
瞬时垂直速度的平均值(m·s-1) | |
瞬时合速度的平均值(m·s-1) | |
轨迹抛物线方程拟合曲线的决定系数, |
Fig.2 The 27th true ascent trajectory (A), the 7th true descent trajectory (B) and the 16th false trajectory (C)in video M1 extracted by the KF-H algorithm, respectively; Probability distribution of the determination coefficient (R2 ) for fitting quadratic curves of 5 756 true trajectories (D)
算法 | HP1 | HP2 | HP3 | HP4 | HP5 | HP6 | HP7 | HP8 | HP9 | HP10 |
---|---|---|---|---|---|---|---|---|---|---|
随机森林 | True | -1 | True | 180 | 18 | True | “sqrt” | “gini” | ||
梯度提升决策树 | True | -1 | True | 210 | 3 | 0.3 | ||||
XGBoost | True | -1 | 70 | 6 | 0.3 | 0.5 | ||||
极度随机树 | True | -1 | True | 186 | 21 | 0.1 | True | None | “entropy” |
Table 2 Final hyperparameter settings for each model optimized by Tree-structured Parzen Estimator
算法 | HP1 | HP2 | HP3 | HP4 | HP5 | HP6 | HP7 | HP8 | HP9 | HP10 |
---|---|---|---|---|---|---|---|---|---|---|
随机森林 | True | -1 | True | 180 | 18 | True | “sqrt” | “gini” | ||
梯度提升决策树 | True | -1 | True | 210 | 3 | 0.3 | ||||
XGBoost | True | -1 | 70 | 6 | 0.3 | 0.5 | ||||
极度随机树 | True | -1 | True | 186 | 21 | 0.1 | True | None | “entropy” |
Fig.4 Correlation matrix of features and label (the value of each matrix element represents the P-value of the significance test and the corresponding color represents the correlation coefficient)
模型 | 准确率 | 精准度 | 召回率 | F1分数 | MCC |
---|---|---|---|---|---|
随机森林 | 0.8923 | 0.8939 | 0.8923 | 0.8857 | 0.7056 |
极度随机树 | 0.9035 | 0.9030 | 0.9035 | 0.8995 | 0.7378 |
梯度提升决策树 | 0.8976 | 0.8970 | 0.8976 | 0.8929 | 0.7207 |
XGBoost | 0.8995 | 0.9012 | 0.8995 | 0.8939 | 0.7267 |
Table 3 Predictive performance of four ensemble models
模型 | 准确率 | 精准度 | 召回率 | F1分数 | MCC |
---|---|---|---|---|---|
随机森林 | 0.8923 | 0.8939 | 0.8923 | 0.8857 | 0.7056 |
极度随机树 | 0.9035 | 0.9030 | 0.9035 | 0.8995 | 0.7378 |
梯度提升决策树 | 0.8976 | 0.8970 | 0.8976 | 0.8929 | 0.7207 |
XGBoost | 0.8995 | 0.9012 | 0.8995 | 0.8939 | 0.7267 |
优化数据集 | 准确率 | 精确度 | 召回率 | F1分数 | MCC | AUC分数 |
---|---|---|---|---|---|---|
原始数据集 | 0.9035 | 0.9030 | 0.9035 | 0.8995 | 0.7378 | 0.9179 |
原始数据集+瞬时水平速度的方差 | 0.9332 | 0.9327 | 0.9332 | 0.9329 | 0.8241 | 0.9506 |
原始数据集+瞬时水平速度的方差+瞬时垂直速度的方差 | 0.9379 | 0.9372 | 0.9379 | 0.9374 | 0.8356 | 0.9697 |
Table 4 Performances of the trained Extremely Randomized Trees by optimized datasets
优化数据集 | 准确率 | 精确度 | 召回率 | F1分数 | MCC | AUC分数 |
---|---|---|---|---|---|---|
原始数据集 | 0.9035 | 0.9030 | 0.9035 | 0.8995 | 0.7378 | 0.9179 |
原始数据集+瞬时水平速度的方差 | 0.9332 | 0.9327 | 0.9332 | 0.9329 | 0.8241 | 0.9506 |
原始数据集+瞬时水平速度的方差+瞬时垂直速度的方差 | 0.9379 | 0.9372 | 0.9379 | 0.9374 | 0.8356 | 0.9697 |
1 | Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].Netherlands:Springer,1942. |
2 | Wang D, Wang Y, Yang B,et al.Statistical analysis of sand grain/bed collision process recorded by high‐speed digital camera[J].Sedimentology,2008,55(2):461-470. |
3 | Jiang C W, Parteli E J R, Dong Z B,et al.Wind-tunnel experiments of aeolian sand transport reveal a bimodal probability distribution function for the particle lift-off velocities[J].Catena,2022,217:106496. |
4 | Zhang Y, Wang Y, Jia P.Measuring the kinetic parameters of saltating sand grains using a high-speed digital camera[J].Science China Physics,Mechanics Astronomy,2014,57:1137-1143. |
5 | O'Brien P, Neuman C M K.PTV measurement of the spanwise component of aeolian transport in steady state[J].Aeolian Research,2016,20:126-138. |
6 | O'Brien P, Neuman C M K.An experimental study of the dynamics of saltation within a three-dimensional framework[J].Aeolian Research,2018,31:62-71. |
7 | Yang B, Wang Y, Zhang Y.The 3-D spread of saltation sand over a flat bed surface in aeolian sand transport[J].Advanced Powder Technology,2009,20(4):303-309. |
8 | O'Brien P, McKenna Neuman C.Experimental validation of the near‐bed particle‐borne stress profile in aeolian transport systems[J].Journal of Geophysical Research:Earth Surface,2019,124(11):2463-2474. |
9 | Kang L Q, Zou X Y, Zhao G D,et al.Wind tunnel investigation of horizontal and vertical sand fluxes of ascending and descending sand particles in aeolian sand transport[J].Earth Surface Processes and Landforms,2016,41(12):1647-1657. |
10 | Ho T D, Valance A, Dupont P,et al.Scaling laws in aeolian sand transport[J].Physical Review Letters,2011,106(9):094501. |
11 | Zhang Y, Li M, Wang Y,et al.Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment[J].Journal of Arid Land,2019,11:664-673. |
12 | Creyssels M, Dupont P, El Moctar A O,et al.Saltating particles in a turbulent boundary layer:experiment and theory[J].Journal of Fluid Mechanics,2009,625:47-74. |
13 | Mei F M, Zhou H J, Su J,et al.A new hybrid algorithm based on Kalman filter-Hungarian algorithm for tracking aeolian saltating particle in the high-speed video[J].Earth Surface Processes and Landforms, 2024, . |
14 | Breiman L.Random forests[J].Machine Learning,2001,45:5-32. |
15 | Geurts P, Ernst D, Wehenkel L.Extremely randomized trees[J].Machine Learning,2006,63:3-42. |
16 | Friedman J H.Greedy function approximation:a gradient boosting machine[J].Annals of Statistics,2001:1189-1232. |
17 | Chen T, Guestrin C.Xgboost:a scalable tree boosting system[C]//Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794. |
18 | Boroughani M, Pourhashemi S, Gholami H,et al.Predicting of dust storm source by combining remote sensing,statistic-based predictive models and game theory in the Sistan watershed,southwestern Asia[J].Journal of Arid Land,2021,13(11):1103-1121. |
19 | Boroughani M, Pourhashemi S, Hashemi H,et al.Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping[J].Ecological Informatics,2020,56:101059. |
20 | Choubin B, Hosseini F S, Rahmati O,et al.Mapping of salty aeolian dust-source potential areas:Ensemble model or benchmark models?[J].Science of The Total Environment,2023,877:163419. |
21 | Gholami H, Mohamadifar A, Sorooshian A,et al.Machine-learning algorithms for predicting land susceptibility to dust emissions:the case of the Jazmurian Basin,Iran[J].Atmospheric Pollution Research,2020,11(8):1303-1315. |
22 | Rahmati O, Mohammadi F, Ghiasi S S,et al.Identifying sources of dust aerosol using a new framework based on remote sensing and modelling[J].Science of The Total Environment,2020,737:139508. |
23 | Iban M C, Bilgilioglu S S.Snow avalanche susceptibility mapping using novel tree-based machine learning algorithms (XGBoost,NGBoost,and LightGBM) with eXplainable Artificial Intelligence (XAI) approach[J].Stochastic Environmental Research and Risk Assessment,2023,37(6):2243-2270. |
24 | Zafari A, Zurita-Milla R, Izquierdo-Verdiguier E.Land cover classification using extremely randomized trees:a kernel perspective[J].IEEE Geoscience and Remote Sensing Letters,2019,17(10):1702-1706. |
25 | 李森,颜长珍.基于ChinaCover数据集的绿洲结构数据制图:以河西内陆河流域为例[J].中国沙漠,2023,43(3):230-242. |
26 | 蒋小芳,徐青霞,段翰晨,等.黄河景电灌区土壤盐渍化反演的多模型对比[J].中国沙漠,2023,43(5):18-30. |
27 | 吴敏,温小虎,冯起,等.基于随机森林模型的干旱绿洲区张掖盆地地下水水质评价[J].中国沙漠,2018,38(3):657-663. |
28 | 张亦然,刘廷玺,童新,等.基于多源遥感和机器学习方法的科尔沁沙地植被覆盖度反演[J].中国沙漠,2022,42(3):187-195. |
29 | Houghton J E, Nichols T E, Griffiths J,et al.Automated classification of estuarine sub‐depositional environment using sediment texture[J].Journal of Geophysical Research:Earth Surface,2023,128(2):e2022JF006891. |
30 | Nichols T E, Worden R H, Houghton J E,et al.Sediment texture and geochemistry as predictors of sub-depositional environment in a modern estuary using machine learning:a framework for investigating clay-coated sand grains[J].Sedimentary Geology,2023,458:106530. |
31 | Zheng,D Y, Hou M C, Chen A Q,et al.Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs:a case study from Sichuan Basin,China[J].Journal of Petroleum Science and Engineering,2022,215,110610. |
32 | Bergstra J, Bardenet R, Bengio Y,et al.Algorithms for hyper-parameter optimization[C]//International Conference on Neural Information Processing Systems.2011. |
33 | Beguería S.Validation and evaluation of predictive models in hazard assessment and risk management[J].Natural Hazards,2006,37:315-329. |
34 | Fawcett T.An introduction to ROC analysis[J].Pattern recognition letters,2006,27(8):861-874. |
35 | al Pedregosaet.Scikit-learn:machine learning in python[J].Journal of Machine Learning Research,2011,12:2825-2830. |
36 | Canbek G, Sagiroglu S, Temizel T T,et al.Binary classification performance measures/metrics:a comprehensive visualized roadmap to gain new insights[C]//2017 International Conference on Computer Science and Engineering(UBMK).IEEE,2017:821-826. |
37 | Chicco D, Jurman G.The advantages of the Matthews correlation coefficient(MCC)over F1 score and accuracy in binary classification evaluation[J].BMC Genomics,2020,21(1):1-13. |
38 | Silla C N, Freitas A A.A survey of hierarchical classification across different application domains[J].Data Mining and Knowledge Discovery,2011,22:31-72. |
39 | Akay H.Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques[J].CATENA,2021,206:105524. |
40 | Yang J M, He Q, Liu Y.Winter-Spring prediction of snow avalanche susceptibility using optimisation multi-source heterogeneous factors in the Western Tianshan Mountains,China[J].Remote Sensing,2022,14(6):1340. |
41 | Duan T, Anand A, Ding D Y,et al.Ngboost:natural gradient boosting for probabilistic prediction[C]//International Conference on Machine Learning.PMLR,2020:2690-2700. |
42 | MacQueen J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.1967:281-297. |
43 | Ester M, Kriegel H P, Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//KDD'96:Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.1996:226-231. |
44 | Bian J, Tian D, Tang Y,et al.Trajectory data classification:a review[J].ACM Transactions on Intelligent Systems and Technology(TIST),2019,10(4):1-34. |
[1] | Ting Ning, Dinghai Zhang, Youyi Zhao, Jing Jiang. Relationship between soil moisture and topography and vegetation in the Tengger Desert [J]. Journal of Desert Research, 2024, 44(5): 133-142. |
[2] | Fanmin Mei, Qianwen Yang, Wang Li, Jin Su. An overview of analytical models of saltation [J]. Journal of Desert Research, 2024, 44(4): 14-23. |
[3] | Teng Zhang, Yunfa Miao, Yaguo Zou, Ziyue Zhang, Guoping Feng. Classification and changes of vegetation in Sugan Lake wetland in the extreme arid region [J]. Journal of Desert Research, 2024, 44(4): 81-90. |
[4] | Wu Min, Wen Xiaohu, Feng Qi, Yin Zhengliang, Yang Linshan. Assessment of Groundwater Quality Based on Random Forest Model in Arid Oasis Area [J]. Journal of Desert Research, 2018, 38(3): 657-663. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech