Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (5): 45-54.DOI: 10.7522/j.issn.1000-694X.2025.00006
Previous Articles Next Articles
Shangzhe Zhoua,b(), Lei Xia,b, Mengchun Cuia,b, Guipeng Cuia,b,c, Weiyuan Konga,b,c, Pan Gaoa,b, Qi Lua,b,c(
)
Received:
2024-09-25
Revised:
2024-12-24
Online:
2025-09-20
Published:
2025-09-27
Contact:
Qi Lu
CLC Number:
Shangzhe Zhou, Lei Xi, Mengchun Cui, Guipeng Cui, Weiyuan Kong, Pan Gao, Qi Lu. Characteristics and implications of leaf wax n-alkanes in typical vegetation of the northern Ulan Buh Desert[J]. Journal of Desert Research, 2025, 45(5): 45-54.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00006
采样点 | 经度(E) /(°) | 纬度(N) /(°) | 海拔 /m | 年平均温度/℃ | 年降水量 /mm | 采样点描述 |
---|---|---|---|---|---|---|
P1 | 106.95 | 40.23 | 1 048 | 9.3 | 161.6 | 黄河以西流动沙丘,分布植物为白刺、梭梭、沙枣、枸杞、黑沙蒿、柽柳 |
P2 | 106.91 | 40.20 | 1 058 | 9.2 | 149.9 | 黄河以西流动沙丘,分布植物为白刺、梭梭、榆 |
P3 | 106.85 | 40.17 | 1 050 | 9.2 | 156.7 | 黄河以西流动沙丘,分布植物为梭梭、北沙柳、细枝岩黄芪、柽柳、沙枣 |
P4 | 106.82 | 40.15 | 1 050 | 9.4 | 145.5 | 黄河以西流动沙丘,分布植物为白刺、梭梭、柽柳 |
P5 | 106.87 | 40.27 | 1 048 | 9.3 | 145.8 | 流动沙丘,分布植物为白刺 |
P6 | 106.70 | 40.44 | 1 037 | 9.3 | 130.7 | 流动沙丘,分布植物为沙冬青 |
P7 | 106.93 | 40.32 | 1 040 | 9.3 | 153.9 | 磴口县以西流动沙丘,分布植物为沙冬青 |
P8 | 106.26 | 40.49 | 1 053 | 9.6 | 115.8 | 狼山以南流动沙丘,分布植物为白刺、沙冬青、蒙古扁桃 |
P9 | 106.05 | 40.39 | 1 154 | 9.2 | 119.2 | 流动沙丘,分布植物为白刺、沙冬青 |
P10 | 105.98 | 40.17 | 1 047 | 9.8 | 113.3 | 流动沙丘,分布植物为梭梭 |
P11 | 106.07 | 40.10 | 1 024 | 9.8 | 121.1 | 流动沙丘,分布植物为沙冬青、红砂 |
P12 | 106.15 | 39.96 | 1 016 | 9.6 | 125.0 | 流动沙丘,分布植物为白刺、梭梭、沙冬青、盐爪爪 |
P13 | 106.48 | 39.95 | 1 058 | 9.4 | 144.4 | 流动沙丘,分布植物为白刺、沙冬青 |
P14 | 106.70 | 40.09 | 1 066 | 9.4 | 152.3 | 黄河以西流动沙丘,分布植物为细枝岩黄芪、黑沙蒿 |
Table 1 Sampling site information
采样点 | 经度(E) /(°) | 纬度(N) /(°) | 海拔 /m | 年平均温度/℃ | 年降水量 /mm | 采样点描述 |
---|---|---|---|---|---|---|
P1 | 106.95 | 40.23 | 1 048 | 9.3 | 161.6 | 黄河以西流动沙丘,分布植物为白刺、梭梭、沙枣、枸杞、黑沙蒿、柽柳 |
P2 | 106.91 | 40.20 | 1 058 | 9.2 | 149.9 | 黄河以西流动沙丘,分布植物为白刺、梭梭、榆 |
P3 | 106.85 | 40.17 | 1 050 | 9.2 | 156.7 | 黄河以西流动沙丘,分布植物为梭梭、北沙柳、细枝岩黄芪、柽柳、沙枣 |
P4 | 106.82 | 40.15 | 1 050 | 9.4 | 145.5 | 黄河以西流动沙丘,分布植物为白刺、梭梭、柽柳 |
P5 | 106.87 | 40.27 | 1 048 | 9.3 | 145.8 | 流动沙丘,分布植物为白刺 |
P6 | 106.70 | 40.44 | 1 037 | 9.3 | 130.7 | 流动沙丘,分布植物为沙冬青 |
P7 | 106.93 | 40.32 | 1 040 | 9.3 | 153.9 | 磴口县以西流动沙丘,分布植物为沙冬青 |
P8 | 106.26 | 40.49 | 1 053 | 9.6 | 115.8 | 狼山以南流动沙丘,分布植物为白刺、沙冬青、蒙古扁桃 |
P9 | 106.05 | 40.39 | 1 154 | 9.2 | 119.2 | 流动沙丘,分布植物为白刺、沙冬青 |
P10 | 105.98 | 40.17 | 1 047 | 9.8 | 113.3 | 流动沙丘,分布植物为梭梭 |
P11 | 106.07 | 40.10 | 1 024 | 9.8 | 121.1 | 流动沙丘,分布植物为沙冬青、红砂 |
P12 | 106.15 | 39.96 | 1 016 | 9.6 | 125.0 | 流动沙丘,分布植物为白刺、梭梭、沙冬青、盐爪爪 |
P13 | 106.48 | 39.95 | 1 058 | 9.4 | 144.4 | 流动沙丘,分布植物为白刺、沙冬青 |
P14 | 106.70 | 40.09 | 1 066 | 9.4 | 152.3 | 黄河以西流动沙丘,分布植物为细枝岩黄芪、黑沙蒿 |
植物种拉丁名 | 种名 | 属 | 科 | 生活型 | 叶形 |
---|---|---|---|---|---|
Haloxylon ammodendron | 梭梭 | 梭梭属 | 藜科 | 小乔木 | 鳞片状宽三角形,同化枝 |
Nitraria roborowskii | 白刺 | 白刺属 | 白刺科 | 灌木 | 宽倒披针形 |
Ammopiptanthus mongolicus | 沙冬青 | 沙冬青属 | 豆科 | 常绿灌木 | 菱状椭圆形、阔披针形 |
Table 2 Typical plant leaf sample information
植物种拉丁名 | 种名 | 属 | 科 | 生活型 | 叶形 |
---|---|---|---|---|---|
Haloxylon ammodendron | 梭梭 | 梭梭属 | 藜科 | 小乔木 | 鳞片状宽三角形,同化枝 |
Nitraria roborowskii | 白刺 | 白刺属 | 白刺科 | 灌木 | 宽倒披针形 |
Ammopiptanthus mongolicus | 沙冬青 | 沙冬青属 | 豆科 | 常绿灌木 | 菱状椭圆形、阔披针形 |
Fig.5 Correlation coefficient diagram between leaf wax n-alkane proxies and environmental factors of Haloxylon ammodendron in the Ulan Buh and Gurbantunggut Desert
植物种 | CMAX | ∑ALK21-35/(μg·g-1) | ACL21-35 | CPI21-35 |
---|---|---|---|---|
梭梭 | 27, 29 | 86±32 (51~131) | 27.5±0.4 (27.3~28.2) | 10.4±1.6 (8.3~12.3) |
白刺 | 27 | 410±168 (201~653) | 27.9±0.3 (27.3~28.2) | 23.2±8.2 (6.5~33.7) |
沙冬青 | 29 | 7 383±2 742 (2 452~10 111) | 29.0±0.0 (29.0~29.1) | 47.1±3.2 (44.1~53.4) |
Table 3 Leaf wax n-alkane proxies in typical vegetation
植物种 | CMAX | ∑ALK21-35/(μg·g-1) | ACL21-35 | CPI21-35 |
---|---|---|---|---|
梭梭 | 27, 29 | 86±32 (51~131) | 27.5±0.4 (27.3~28.2) | 10.4±1.6 (8.3~12.3) |
白刺 | 27 | 410±168 (201~653) | 27.9±0.3 (27.3~28.2) | 23.2±8.2 (6.5~33.7) |
沙冬青 | 29 | 7 383±2 742 (2 452~10 111) | 29.0±0.0 (29.0~29.1) | 47.1±3.2 (44.1~53.4) |
[1] | 王涛.我国沙漠化研究的若干问题:2.沙漠化的研究内容[J].中国沙漠,2003,23(5):1-6. |
[2] | 鹿化煜,周亚利, Mason J,等.中国北方晚第四纪气候变化的沙漠与黄土记录:以光释光年代为基础的直接对比[J].第四纪研究,2006,26(6):888-894. |
[3] | 鹿化煜,李郎平,弋双文,等.中国北方沙漠-黄土体系的沉积和侵蚀过程与未来趋向探析[J].地学前缘,2010,17(5):336-344. |
[4] | 侯仁之,俞伟超.乌兰布和沙漠的考古发现和地理环境的变迁[J].考古,1973,2:92-107. |
[5] | 贾铁飞,银山,何雨,等.乌兰布和沙漠东海子湖全新世湖相沉积结构分析及其环境意义[J].中国沙漠,2003,23(2):165-170. |
[6] | 贾铁飞,银山.乌兰布和沙漠北部全新世地貌演化[J].地理科学,2004,24(2):217-221. |
[7] | 春喜,陈发虎,范育新,等.乌兰布和沙漠的形成与环境变化[J].中国沙漠,2007,27(6):927-931. |
[8] | 陈发虎,范育新,春喜,等.晚第四纪“吉兰泰–河套”古大湖的初步研究[J].科学通报,2008,53(10):1207-1219. |
[9] | 范育新,陈发虎,范天来,等.乌兰布和沙漠景观形成的沉积学和光释光年代学证据[J].中国科学:地球科学,2010,40(7):903-910. |
[10] | 赵杰,李德文,孙昌斌,等.末次冰期以来乌兰布和沙漠北缘的环境变迁[J].第四纪研究,2017,37(2):380-392. |
[11] | 杨小平,梁鹏,方伊曼,等.中国沙漠与环境演变[M].北京:科学出版社,2024:1-349. |
[12] | Chun X, Chen F, Fan Y,et al.Formation of Ulan Buh Desert and its environmental changes during the Holocene[J].Frontiers of Earth Science in China,2008,2(3):327-332. |
[13] | Zhao H, Li G, Sheng Y,et al.Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert, China[J]. Palaeogeography Palaeoclimatology Palaeoecology,2012,331/332:31-38. |
[14] | 陈雪梅,李国强,黄小忠,等.乌兰布和沙漠钻孔WL10ZK-1孢粉记录的末次冰期以来的植被变化[J].海洋地质与第四纪地质,2013,33(4):169-174. |
[15] | Chen F, Li G, Zhao H,et al.Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary[J].Quaternary Research,2014,81(3):476-487. |
[16] | Zhang W, Lu H, Li C,et al.Pollen preservation and its potential influence on paleoenvironmental reconstruction in Chinese loess deposits[J].Review of Palaeobotany and Palynology,2017,240:1-10. |
[17] | 高有红,李卓仑,韩朗,等.阿拉善沙漠植物钙质根管:形态特征、分类及其环境指示意义[J].沉积学报,2017,35(1):75-84. |
[18] | Ning K, Wang N, Lv X,et al.A grain size and n-alkanes record of Holocene environmental evolution from a groundwater recharge lake in Badain Jaran Desert,Northwestern China[J]. The Holocene,2019,29(6):1045-1058. |
[19] | Xie M, Sun Q, Dong H,et al. n-Alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J].The Holocene,2020,30(10):1451-1461. |
[20] | Eglinton G, Hamilton R.Leaf epicuticular waxes[J].Science,1967,156(3780):1322-1335. |
[21] | Feakins S, Eglinton T, deMenocal P.A comparison of biomarker records of northeast African vegetation from lacustrine and marine sediments (ca. 3.40 Ma)[J].Organic Geochemistry,2007,38(10):1607-1624. |
[22] | Garcin Y, Schefuß E, Schwab V,et al.Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon,Western Central Africa[J].Geochimica et Cosmochimica Acta,2014,142(1):482-500. |
[23] | Diefendorf A, Freimuth E.Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review[J].Organic Geochemistry,2017,103:1-21. |
[24] | Zhang D, Beverly E, Levin N,et al.Carbon isotopic composition of plant waxes,bulk organics and carbonates from soils of the Serengeti grasslands[J].Geochimica et Cosmochimica Acta,2021,311:316-331. |
[25] | Dodd R, Poveda M.Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis [J].Biochemical Systematics and Ecology,2003,31(11):1257-1270. |
[26] | Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient-Implications for the sedimentary biomarker record[J].Organic Geochemistry,2006,37(4):469-483. |
[27] | Hoffmann B, Kahmen A, Cernusak L,et al.Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia[J].Organic Geochemistry,2013,62(1):62-67. |
[28] | Bush R, McInerney F.Influence of temperature and C4 abundance on n-alkane chain length distributions across the Central USA[J].Organic Geochemistry,2015,79:65-73. |
[29] | Feakins S, Peters T, Wu M,et al.Production of leaf wax n-alkanes across a tropical forest elevation transect[J].Organic Geochemistry,2016,100:89-100. |
[30] | Shi M, Han J, Wang G,et al.A long-term investigation of the variation in leaf wax n-alkanes responding to climate on Dongling Mountain,North China[J].Quaternary International,2021,592:67-79. |
[31] | Han Y, Wang G, Sun Q,et al.Variability of leaf wax n-alkanes across gradients of environment and plant functional type in China[J].Global and Planetary Change,2024,237:104441. |
[32] | Bray E, Evans E.Distribution of n-paraffins as a clue to recognition of source beds[J].Geochimica Et Cosmochimica Acta,1961,22(1):2-15. |
[33] | Cranwell P.Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J].Freshwater Biology,1973,3(3):259-265. |
[34] | Jeng W.Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments[J].Marine Chemistry,2006,102(3/4):242-251. |
[35] | Vogts A, Moossen H, Rommerskirchen F,et al.Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species[J].Organic Geochemistry,2009,40(10):1037-1054. |
[36] | Tipple B, Pagani M.Environmental control on eastern broadleaf forest species' leaf wax distributions and D/H ratios[J].Geochimica et Cosmochimica Acta,2013,111:64-77. |
[37] | Wang J, Axia E, Xu Y,et al.Temperature effect on abundance and distribution of leaf wax n-alkanes across a temperature gradient along the 400 mm isohyet in China[J].Organic Geochemistry,2018,120:31-41. |
[38] | Liu J.Seasonality of the altitude effect on leaf wax n-alkane distributions,hydrogen and carbon isotopes along an arid transect in the Qinling Mountains[J].Science of the Total Environment,2021,778:146272. |
[39] | Liu X, Feakins S, Dong X,et al.Experimental study of leaf wax n-alkane response in winter wheat cultivars to drought conditions[J].Organic Geochemistry,2017,113:210-223. |
[40] | Huang X, Zhao B, Wang K,et al.Seasonal variations of leaf wax n-alkane molecular composition and delta D values in two subtropical deciduous tree species: results from a three-year monitoring program in Central China[J].Organic Geochemistry,2018,118:15-26. |
[41] | Jiang H, Feakins S, Sun H,et al.Dynamic changes in leaf wax n-alkanes and δ 13C during leaf development in winter wheat under varied irrigation experiments[J].Organic Geochemistry,2020,146:104054. |
[42] | Baker E.The influence of environment on leaf wax development in Brassica oleracea var.gemmifera [J].New Phytologist,1974,73(5):955-966. |
[43] | Shepherd T, Robertson G, Griffiths D,et al.Effects of environment on the composition of epicuticular wax esters from kale and swede[J].Phytochemistry,1997,46(1):83-96. |
[44] | Kim K, Park S, Jenks M.Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit[J].Journal of Plant Physiology,2007,164(9):1134-1143. |
[45] | 乌拉.乌兰布和沙漠植被及其保护[J].陕西林业科技,2007,4:133-137. |
[46] | Rieley G, Collier R, Jones D,et al.The biogeochemistry of Ellesmere Lake,U.K.-I: source correlation of leaf wax inputs to the sedimentary record[J].Organic Geochemistry,1991,17(6):901-912. |
[47] | Rommerskirchen F, Plader A, Eglinton G,et al.Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes[J].Organic Geochemistry,2006,37(10):1303-1332. |
[48] | 崔景伟,黄俊华,谢树成.湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J].科学通报,2008,53(11):1318-1323. |
[49] | Zech M, Buggle B, Leiber K,et al.Reconstructing Quaternary vegetation history in the Carpathian Basin,SE Europe,using n-alkane biomarkers as molecular fossils: problems and possible solutions,potential and limitations[J].Eiszeitalter and Gegenwart-Quaternary Science Journal,2009,58(2):148-155. |
[50] | 钟艳霞,薛骞,陈发虎.黄土高原西部地区现代植被及其表土正构烷烃分布模式研究[J].第四纪研究,2009,29(4):767-773. |
[51] | 饶志国,吴翼,朱照宇,等.长链正构烷烃主峰碳数作为判别草本和木本植物指标的讨论:来自表土和现代植物的证据[J].科学通报,2011,56(10):774-780. |
[52] | Ceccopieri M, Scofield A, Almeida L,et al.Carbon isotopic composition of leaf wax n-alkanes in mangrove plants along a latitudinal gradient in Brazil[J].Organic Geochemistry,2021,161:104299. |
[53] | 石敏锐,韩家懋,周力平,等.植物亲缘关系影响植物叶蜡正构烷烃的含量和分布特征[J].第四纪研究,2021,41(4):986-999. |
[54] | Yan Y, Zhao B, Xie L,et al.Trend reversal of soil n-alkane Carbon Preference Index (CPI) along the precipitation gradient and its paleoclimatic implication[J].Chemical Geology,2021,581:120402. |
[55] | 吴征镒.中国植被[M].北京:科学出版社,1978:1-1364. |
[56] | 侯学煜.中国自然地理:植物地理(下册)[M].北京:科学出版社,1988:1-279. |
[57] | 刘亚楠,陈晓娜,郭跃,等.沙旱生灌木对干旱胁迫的响应研究进展[J].世界林业研究,2023,36(5):21-26. |
[58] | 段娜,王佳,刘芳,等.植物抗旱性研究进展[J].分子植物育种,2018,16(15):5093-5099. |
[59] | 张耀甲.甘肃民勤地区主要沙区植物的生态生理特性[J].生态学杂志,1984,1:1-4. |
[60] | 张露荷,赵通,黄华梨,等.“赞皇大枣”和“冬枣”对干旱胁迫的生理响应[J].干旱地区农业研究,2023,41(3):104-113. |
[1] | Jia Ding, Yiyun Tang, Lei Li, Hongyu Yang, Zeqi Zhang, Jun Wang, Shuchang Yu, Jinchao Feng, Sha Shi, Haotian Yang. Effects of soil water and nitrogen content on Artemisia gansuensis, Lespedeza bicolor and Stipa capillata in the Ningxia Desert Steppe [J]. Journal of Desert Research, 2025, 45(3): 271-282. |
[2] | Yanyan Yang, Lianyou Liu, Bo Wu, Yingjun Pang. Effects of sand dune burial on the litter decomposition of desert plant branches [J]. Journal of Desert Research, 2025, 45(3): 313-325. |
[3] | Hongxia Zhang, Rongliang Jia, Pengshan Zhao, Xin Zhao, Xiaoyun Cui. A review of the stress physiology and ecology of desert plants [J]. Journal of Desert Research, 2025, 45(3): 72-79. |
[4] | Yuxuan Cao, Jinrong Li, Xu Yang, Namahan, Hengbo Wu, Pengcheng Qu. The impact of vegetation factors of three vegetation communities on aeolian sand factors in the Ulan Buh Desert [J]. Journal of Desert Research, 2025, 45(2): 37-46. |
[5] | Jinrong Li, Zhaoen Han, Wei Cui, Xiaolin Jin, Chunhua Dou. Wind tunnel simulation of wind-sand transport characteristics over frozen dune surfaces [J]. Journal of Desert Research, 2025, 45(1): 229-241. |
[6] | Tian Yong, Jinxia Zhang, Lijuan Chen, Haiyang Xi, Binwu Zhang, Kaiyuan Gan. Characteristics of soil water and salt spatial differentiation along the Yellow River section of Ulan Buh Desert and its causes [J]. Journal of Desert Research, 2024, 44(3): 247-258. |
[7] | Youhan Wu, Jie Yin, Zifeng Wu, Eerdun Hasi. Barchan dune dynamics in the sand belt between the Badain Jaran Desert and Ulan Buh Desert [J]. Journal of Desert Research, 2024, 44(2): 78-89. |
[8] | Duoqing Man, Jinnian Tang, Xuemei Yang, Delu Li, Shujiang Guo, Fang Chen, Feng Ding. The change characteristics of 10 typical desert plant populations in Minqin desert area in 1960 to 2021 [J]. Journal of Desert Research, 2023, 43(6): 20-28. |
[9] | Yongshan Li, Xiaopeng Jia, Haibing Wang, Jian Wang, Qimin Ma. Talweg lateral shift characteristics in the Ulan Buh Desert Reach of the Yellow River from 1966 to 2019 [J]. Journal of Desert Research, 2023, 43(5): 59-65. |
[10] | Kaiyuan Gan, Jinxia Zhang, Lijuan Chen, Haiyang Xi, Binwu Zhang, Tian Yong, Yuxi Wei. Characteristics and spatial differentiation of plant communities along the Yellow River in the Ulan Buh Desert [J]. Journal of Desert Research, 2023, 43(4): 180-190. |
[11] | Xing Li, Yuan Ma, Xing Li, Junliang Gao, Zhiming Xin, Qi Lu. Plant community heterogeneity and its influencing factors in the Ulan Buh Desert [J]. Journal of Desert Research, 2022, 42(5): 187-194. |
[12] | Yali Liu, Jianhua Bai, Wei Xiong, Yuqing Han, Honglin Lian, Hao Guo, Zhiming Xin, Xiangjie Liu, Huaiyuan Liu. The characteristics of branch nocturnal sap flow and its environmental driving mechanism of Haloxylon ammodendron artificial shrub in the Ulan Buh Desert [J]. Journal of Desert Research, 2022, 42(5): 195-203. |
[13] | Ying Yang, Lü Ping, Fang Ma, Zhun Liang, Mingjing Xu. Characteristics of wind regime in the southwest edge of the Ulan Buh Desert and their influence on the formation of dome dune [J]. Journal of Desert Research, 2021, 41(2): 19-26. |
[14] | Yang Lizhen, Feng Li, Yang Guisen, Huang Lei. Water absorption potential and influencing factors of leaf in Caragana korshinskii, Artemisia ordosica, Hedysarum scoparium in a revegetated area of the Tengger Desert, China [J]. Journal of Desert Research, 2020, 40(2): 214-221. |
[15] | Zhang Rui, Zhou Xiaobing, Zhang Yuanming. Affects of Biological Soil Crusts on Litter Decomposition in the Gurbantunggut Desert [J]. Journal of Desert Research, 2019, 39(6): 151-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech