Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2007, Vol. 27 Issue (3): 448-454    DOI:
生物土壤与生态     
Water Relations of Different Parts of Artemisia ordosica
LI Xiao-jun1,2, TAN Hui-juan1,2, ZHANG Zhi-shan1, LI Xin-rong1
1.Shapotou Desert Experimental Research Station, Cold and Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Graduate School of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (1116KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Water parameters of different parts (reproductive shoot, vegetative shoot, annual tress, biennial tress, trunk, roots) of Artemisia ordosica and their roles in water transfer of SPAC system were studied by using the plant pressure-volume technique. The results showed that different parts of Artemisia ordosica had the similar water physiology, but significant differences existed among these parameters. With the increase of lignification, the maximum osmotic potential at saturated point(Ψ100π), osmotic potential (Ψ0), relative water deficit (D0RW), relative osmotic water deficit at turgor loss point(D0ROW), bound water content(Vb) and bulk elastic modulus(εmax) of the tress (except for reproductive shoots) all increased, while free water content(Vf) decreased. The Ψ100π, Ψ0, D0RWand D0ROW of the reproductive shoot were higher than that of the other kinds of tress; the Ψ100π, Ψ0, D0RW, D0ROW, Vb and εmax of the root were higher than that of any kind of tress, while Vf and (ΔΨ of the root were lower than that of tress. In addition, the total hydraulic capacitance(C) of tress generally decreased with the increase of lignification, but for details, there were no obvious differences among different kinds of tress before turgor loss and gradually decreased after turgor loss. As a whole, the C of reproductive shoot was higher than that of other tress, and the C of root was the highest one. Under the condition of drought, new tress tended to lose its water and to keep low water potential and turgor because of its low bound water content, low bulk modulous and high hydraulic capacitance; while old tress could hold their water because of their high bound water content, stiffer and thicker cell wall. The root was characterized by high free water content and hydraulic capacitance, which showed a property of being prone to lose water easily and was beneficial to the water transfer in SPAC system.
Key words:  Artemisia ordosica      pressure-volume curve      water parameters of plant      hydraulic capacitance     
Received:  01 January 2006      Published:  20 May 2007
ZTFLH:  Q945.17  

Cite this article: 

LI Xiao-jun;TAN Hui-juan;ZHANG Zhi-shan;LI Xin-rong. Water Relations of Different Parts of Artemisia ordosica. JOURNAL OF DESERT RESEARCH, 2007, 27(3): 448-454.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2007/V27/I3/448

[1]曾小平,赵平,彭少麟.鹤山人工马占相思林水分生态研究[J].植物生态学报,2000,24(1):69-73.
[2]郑勇平.PV曲线在杨树耐旱性鉴别中的应用[J].浙江林学院学报,1992,9(1):36-41.
[3]Austin R B.Prospects for improving crop production in stressful environments[M]∥Jones H,Flowers T,Jones M,Eds.Plants Under Stress.Cambridge:Cambridge University Press,1989:236-248.
[4]周海燕,赵爱芬.科尔沁沙地环境对小叶杨和杂交杨生理状况的影响[J].中国沙漠,1999,19(增刊1):72-74.
[5]Castonguay Y,Markhart A. Leaf gas exchange in water-stressed common bean and Tepary bean[J].Crop Science, 1992,32: 980-986.
[6]涂璟,王克勤.干旱地区造林树种的水分生理生态的研究进展[J].西北林学院学报,2003,18(3):26-30.
[7]李吉跃.PV技术在油松侧柏苗木抗旱特性研究中的应用[J].北京林业大学学报,1989,11(1):3-11.
[8]常学礼,赵文智.樟子松、小叶杨水分生理及林地水分状况的研究[J].中国沙漠,1990,10(4):18-24.
[9]Kramer P J.Water Relation of Plants[M].New York:Academic Press,1983:342-389.
[10]王万里.压力室在植物水分状况研究中的应用[J].植物生理学通讯,1984(3):52-57.
[11]王孟本,李洪建,柴宝峰.柠条的水分生理生态学特性[J].植物生态学报,1996,20(6):494-501.
[12]李庆梅,徐化成.油松P-V曲线主要水分参数随季节和种源的变化[J].植物生态学与地植物学学报,1992,16(14):326-335.
[13]Grossnickle S C.Shoot phenology and water relations of Picea glauca[J].Canadian Journal of Forest Research,1989(19):1287-1290.
[14]Jones M M,Turner N C.Osmotic adjustment in expanding and full expanded leaves of Sunflower in response to water stress[J].Australian Journal of Plant Physiology,1980(7):181-192.
[15]Wilson J R.Adaptation to water stress of the leaf water relation of four tropical species[J].Australian Journal of Plant Physiology,1980(7):208-220.
[16]Jones M M.Mechanism of drought resistance[M]∥Palag L G,Aspinall D,eds.Physiology and Biochemistry of Drought Resistance in Plants.[s.l.]:Academic Press,1981:15-37.
[17]张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅰ)[J].北京林业大学学报,1994,16(1):1-11.
[18]Donald B Z,Lee R,Jay H K.Variation in water relations characteristics of terminal shoots of Port-Orford-cedar (Chamaecyparis lawsoniana) seedlings[J].Tree Physiology,2001(21):743-749.
[19]周海燕.金昌市4种乔木抗旱性生理指标的研究[J].中国沙漠,1997,17(3):301-303.
[20]杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报,1997,17(4):364-370.
[21]冯金朝.沙生植物水分特征曲线及水分关系的初步研究[J].中国沙漠,1995,15(3):222-226.
[22]张志山,王新平,李新荣,等.沙漠人工植被区土壤蒸发测定[J].中国沙漠,2005,25(2):243-248.
[23]王沙生,高荣孚,吴贯明.植物生理学[M].第二版.北京:中国林业出版社,1991:173-367.
[24]Blake T J,Li Jiyue.Effects of repeated cycles of dehydration-rehydration on drought tolerance of Jack pine and Black spruce seedlings[J].Journal of Beijing Forestry University:English Edition,1998,7(2):1-18.
[25]Vertucci C W,Leopold A C.The relationship between water binding and desiccation tolerance in tissues[J].Plant Physiology,1987,85:232-238.
[26]Chimenti C A,Hall A J.Responses to water stress of apoplastic water fraction and bulk modulus of elasticity in sunflower (Helianthus annuus L.) genotypes of contrasting capacity for osmotic adjustment[J].Plant and Soil,1994,166:101-107.
[27]汤章城.植物干旱生态生理的研究[J].生态学报,1983,3(3):196-20.
[28]Wilson J R.Adaptation to water stress of the leaf water relation of four tropical species[J].Australian Journal of Plant Physiology,1980(7):208-220.
[29]杨吉安,苏印泉,张康健.杜仲优树苗木水分生理状况的研究[J].西北林学院学报,1994,9(4):12-16.
[30]Schobert B.Is there an osmotic regulatory mechanism in algae and higher plants?[J].Journal of Theoretical Biology,1977,68:17-26.
[31]孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究[J].林业科学,2003,39(2):33-38.
[32]李岩,李德全,潘海春,等.PV技术在研究细胞壁弹性调节上的应用[J].植物生理学通讯,1996,32(3):201-203.
[33]Blake T J,Tschaplinski T J.Water relations[M]∥Mitchell C P,For-Robertson J B,Hinckley T M,et al,eds. Eco-physiology of Short Rotation Forest Crops.Amster:Elsevier Applied Science,1992:66-99.
[34]Zimmermann U,Steudle E. Physical aspects of water relations of plant cells[J].Advance of Botany Research,1978,6:45-117.
[35]周海燕.甘肃金昌市引种植物抗旱性的比较研究[J].中国沙漠,2000,20(4):464-466.
[36]Kumagai T.Modeling water transportation and storage in sap wood-model development and validation[J].Agronomy Forest Meteorology,2001,109:105-115.
[37]刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社,1999.
[38]Kravka M,Krejzar J,Cermak J.water content in stem-wood of large pine and spruce trees in natural forests in central Sweden[J].Agronomy Forest Meteorology,1999,98/99:555-562.
[39]谢东锋.山东省主要造林树种耗水性研究[D].济南:山东农业大学,2004.
[40]黄明斌,邵明安.不同有效土壤水势下植物叶水势与蒸腾速率的关系[J].水利学报,1996,3:1-6.
[41]Jones H T.Plant and microclimate—A quantitative approach to environmental plant physiology[M].Cambridge: Cambridge University Press,1992:25-34.
[42]邱国玉.沙拐枣属抗旱性的数量研究[J].中国沙漠,1988,8(3):31-40.
No Suggested Reading articles found!