水文与水资源 |
|
|
|
|
Features of Hydrogen and Oxygen Isotopes in Lakes and Groundwater in Southeast Badain Jaran Desert |
ZHANG Hua-an, WANG Nai-ang, LI Zhuo-lun, DONG Chun-yu, LU Ying, LI Gui-peng |
College of Earth and Environmental Sciences/Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The Badain Jaran Desert is located in the centre of the Alxa Plateau to north of the Qilian Mountains and the Tibetan Plateau. It is the second largest desert in China with an area of 52 162 km2. Elevation in the interior of the Badain Jaran ranges from 1 500 m in the southeast to 900 m in the northwest, producing a regional hydraulic gradient from SE to NW. The unique desert environment with its lakes attracted many scientific investigations, so in this paper, by analyzing hydrogen and oxygen isotopes in the desert lakes and groundwater in the southeast of Badain Jaran Desert, connecting with totally dissolved solids (TDS) of groundwater, we discussed the recharge relationship between lakes and groundwater in the desert area, and made a further investigation on the evaporation in the Badain Jaran Desert. The hydrogen and oxygen isotope test indicated that the averaged δD and δ18O compositions had a relationship of δD=4.1δ18O-30.02‰(n=37,R2=0.94), and the low slope of the evaporation line indicated the enhanced evaporation in the Badain Jaran Desert. The lakes had a similar evaporation trend with the groundwater in the southeast Badain Jaran Desert, and it implied that there was some degree of recharge between them. Comparison of the isotopic enrichment degrees of groundwater in the central region and the southeastern parts of the desert showed that the groundwater evaporated in the central region was more severe than in the southeast margin. Comparison of the evaporation of lagoon in the study area and in other arid regions illustrated that the lakes in the Badain Jaran Desert were affected by the effect of excessive evaporation.
|
Received: 01 August 2010
Published: 20 November 2011
|
|
[1]张慧,张新基.水文地质学中的环境同位素[M].黄河水利出版社,2006:3-77. [2]李锋.中国北方沙尘源区铅同位素分布特征及其示踪意义的初步研究[J].中国沙漠,2007,27(5):738-744. [3]王涛.干旱区主要陆表过程与人类活动和气候变化研究进展[J].中国沙漠,2007,27(5):711-718. [4]钟巍,王立国,熊黑钢,等.塔里木盆地南缘和田绿洲中全新世以来气候环境变化与人类活动[J].中国沙漠,2007,27(2):171-176. [5]张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展,2006,17(5):738-747. [6]张应华,仵彦卿.黑河流域中游盆地地下水补给机理分析[J].中国沙漠,2009,29(2):370-375. [7]Dansgard W.Stable isotope in precipitation[J].Tellus,1964,16(4):436-468. [8]聂振龙,陈宗宇,申建梅,等.应用环境同位素方法研究黑河源区水文循环特征[J].地理与地理信息科学,2005,21(1):104-108. [9]Hofmann J.The lakes in the SE part of Badain Jaran Shamo,their limnology and geochemistry[J].Geowissenschaften,1996,14(718):275-278. [10]Jakel D.The Badain Jaran Desert: its origin and development[J].Geowissenschaften,1996,14(7-8):272-274. [11]杨小平.巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变[J].第四纪研究,2002,22(2):97-104. [12]闫满存,王光谦,李保生,等.巴丹吉林沙漠高大沙山的形成发育研究[J].地理学报,2001,56(1):83-91. [13]陈建生,赵霞,盛雪芬,等.巴丹吉林沙漠湖泊群与沙山形成机理研究[J].科学通报,2006,51(23):2789-2796. [14]丁宏伟,王贵玲.巴丹吉林沙漠湖泊形成的机理分析[J].干旱区研究,2007,24(1):1-7. [15]屈建军,常学礼,董光荣,等.巴丹吉林沙漠高大沙山典型区风沙地貌的分形特性[J].中国沙漠,2003,23(4):361-365. [16]张虎才,明庆忠.中国西北极端干旱区水文与湖泊演化及其巴丹吉林沙漠大型沙丘的形成[J].地球科学进展,2006,21(5):532-538. [17]Yang X P,Williams M A J.The ion chemistry of lakes and Late Holocene desiccation in the Badain Jaran Desert,Inner Mongolia,China[J].Catena,2003,51(1):45-60. [18]Yang X P,Ma N N,Dong J F,et al.Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert,western China[J].Quaternary Research,2010,73(1):10-19. [19]Yang X P.Chemistry and Late Quaternary evolution of ground and surface waters in the area of Yabulai Mountains,Western Inner Mongolia,China[J].Catena,2006,66(1-2):135-144. [20]马妮娜,杨小平.巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义[J].第四纪研究,2008,28(4):702-711. [21]Ma J Z,Li D,Zhang J W,et al.Ground water recharge and climatic change during the last 1000 years from unsaturated zone of SE Badain Jaran Desert[J].Chinese Science Bulletin,2003,48(14):1469-1474. [22]Ma J Z,Edmunds W M.Groundwater and lake evolution in the Badain Jaran desert ecosystem,Inner Mongolia[J].Hydrogeology Journal,2006,14(7):1231-1243. [23]马金珠,黄天明,丁贞玉,等.同位素指示的巴丹吉林沙漠南缘地下水补给来源[J].地球科学进展,2007,22(9):922-930. [24]马金珠,陈发虎,赵华.1000年以来巴丹吉林沙漠地下水补给与气候变化的包气带地球化学记录[J].科学通报,2004,49(1):22-26. [25]黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J].现代地质,2007,21(4): 624-631. [26]Chen J S,Li L,Wang J Y,et al.Groundwater maintains dune landscape[J].Nature,2004,432:459-460. [27]陈建生,凡哲超,汪集旸,等.巴丹吉林沙漠湖泊及其下游地下水同位素分析[J].地球学报,2003,24(6):497-504. [28]陈建生,赵霞,盛雪芬,等.同位素地球化学方法研究巴丹吉林沙漠高大沙山与湖泊水补给源[J].地质学报,2005(4):576-589. [29]朱金峰,王乃昂,陈红宝,等.基于遥感的巴丹吉林沙漠范围与面积分析[J].地理科学进展,2009,29(9):1087-1094. [30]陈建生,汪集旸.试论巴丹吉林沙漠地下水库的发现对西部水计划的影响[J].水利经济,2004,15(3):28-32. [31]杨艺,李保生,李云卓,等.巴丹吉林沙漠查格勒布剖面微量元素反映的150 ka BP以来的气候变化[J].中国沙漠,2007,27(1):1-8. [32]孙培善,孙德钦.内蒙古高原西部水文地质初步研究:治沙研究(第六号)[M].北京:科学出版社,1964:245-317. [33]黄祥飞.中国生态系统研究网络观测与分析标准方法——湖泊生态调查观测与分析[M].中国标准出版社,1999:33-36. [34]Craig H.Isotopic variations in meteoric water[J].Science,1961,133:1702-1703. [35]巩同梁,田立德,刘东年,等.羊卓雍湖流域湖水稳定同位素循环过程研究[J].冰川冻土,2007,29(6):914-920. [36]焦鹏程,王弭力,刘成林.新疆罗布泊盐湖卤水的氚同位素特征及其地质意义[J].核技术,2004,27(9):710-715. [37]胡海英,包为民,王涛,等.同位素技术在湖泊水文学中的应用研究[J].水电能源科学,2008,26(1):40-43. [38]A莱尔曼.湖泊的化学-地质学和物理学[M].王苏民等译.北京:地质出版社,1978:243-256. [39]张应华,仵彦卿.黑河流域中上游地区降水中氢氧同位素研究[J].冰川冻土,2009,31(1):34-39. [40]常志勇,齐万秋,赵振宏,等.同位素技术在罗布泊地区地下水勘查中的应用[J].新疆地质,2001,19(3):1-2. [41]李文鹏,郝爱兵,郑跃军,等.塔里木盆地区域地下水环境同位素特征及其意义[J].地学前缘,2006,13(1):191-198. [42]刘丹,刘世青,徐则民.应用环境同位素方法研究塔里木河下游浅层地下水[J].成都理工学院学报,1997,24(3):89-95. [43]顾慰祖,刘涌,贺祥,等.阿拉善高原地下水的稳定同位素异常[J].水科学进展,1998,9(4):333-337. [44]尹观,倪师军,张其春.氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J].成都理工学院学报,2001,28(3):251-254. [45]杨波,尹观.水体同位素组成及氘过量参数在地热勘探中的示踪作用——以四川绵竹三箭水温泉开发为例[J].矿物岩石地球化学通报,2004,23(2):129-133. [46]晁念英,王佩仪,刘存富,等.河北平原地下水氘过量参数特征[J].中国岩溶,2004,23(4):335-338. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|