Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2011, Vol. 31 Issue (6): 1630-1638    DOI:
水文与水资源     
Groundwater Recharge and Geochemical Evolution in Quaternary Aquifer of Beidahe River Watershed
HE Jian-hua, FU Su-jing, MA Jin-zhu, ZHANG Qing-huan
MOE Key Laboratory of Western Chinas Environmental Systems, Lanzhou University, Lanzhou 730000, China
Download:  PDF (4091KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The objectives of this study are to use hydrochemical and stable isotope technology to determine hydrochemical evolution of groundwater and its source in Beidahe river watershed of Gansu province. Along the groundwater path, groundwater evolves gradually from HCO-3 to SO2-4-HCO-3, and then becomes SO2-4. The growth rates of defferent ions are defferent with increase of total dissolved solid. The dissolution of dolomite and gypsum contribute to increase of Mg2+ and SO2-4, and other processes such as cation-exchange have significative contribution on the water composition, especially for Na+. Ca2+ is strongly influenced by dissolution-precipitation and subsequent cation-exchange. Evaporation of shallow groundwater occurred during the path. The stable isotope ranges from -10.28 to -7.85‰ for δ18O, and from -65.07 to -53.85‰ for δD. There is not significant defference for isotope between Jiuquan basin and Zhangye basin in Gansu province, but the isotope is deficient at piedmont compared with at plains in Jiuquan basin. The river runoff is the main source for alluvial fan groundwater, but the deep groundwater is complex. So we must be cautious during the exploitation of groundwater.
Key words:  groundwater      geochemical evolution      stable isotope     
Received:  15 August 2010      Published:  20 November 2011
ZTFLH:  P641  

Cite this article: 

HE Jian-hua;FU Su-jing;MA Jin-zhu;ZHANG Qing-huan. Groundwater Recharge and Geochemical Evolution in Quaternary Aquifer of Beidahe River Watershed. JOURNAL OF DESERT RESEARCH, 2011, 31(6): 1630-1638.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2011/V31/I6/1630

[1]王涛.干旱区绿洲化、荒漠化研究的进展与趋势[J].中国沙漠,2009,29(1):1-9.
[2]张光辉,聂振龙,张翠云,等.黑河流域走廊平原地下水补给变异特征与机制[J].水利学报,2005,36(6):1-8.
[3]高前兆.河西内陆河流域的水循环特征[J].干旱气象,2003,21(3):21-28.
[4]刘少玉,张光辉,张翠云,等.黑河流域水资源系统演化和人类活动影响[J].吉林大学学报(地球科学版),2008,38(5):806-812,819.
[5]周鲲鹏,马金珠,魏国孝,等.酒泉-金塔盆地水化学特征及其演化规律[J].兰州大学学报(自然科学版),2009,45(1):31-36.
[6]张应华,仵彦卿.黑河流域中游盆地地下水补给机理分析[J].中国沙漠,2009,29(2):370-375.
[7]胡晓利,卢玲.黑河中游张掖绿洲地下水时空变异性分析[J].中国沙漠,2009,29(4):777-784.
[8]何世水,葛生年.金塔灌区地下水的动态演变及其对环境影响[J].中国沙漠,1986,6(3):38-49.
[9]朱利东,王成善.青藏高原东北缘酒泉盆地的演化特征与宽台山-黑山断裂的性质[J].地质通报,2005,24(9):837-840.
[10]赵传燕,李守波,冯兆东.黑河下游地下水波动带地下水时空分布模拟研究[J].中国沙漠,2010,30(1):198-203.
[11]Clark I D, Fritz P.Environmental Isotopes in Hydrology[M].New York:Lewis Publishers,Boca Raton,1997:35-110.
[12]Garcial M G,DelHidalgo M,Blesa M A.Geochemistry of ground-water in the alluvial plain of Tucuman province Argentina[J].Hydrology Journal,2001,9:597-610.
[13]黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境,2008,22(8):76-81.
[14]Ma J Z,Ding Z Y,Edmunds W M,et al.Limits to recharge of groundwater from Tibetan plateau to the Gobi desert,implications for water management in the mountain front[J].Journal of Hydrology,2009,364:128-141.
[15]甘义群,李小倩,周爱国,等.黑河流域地下水氘过量参数特征[J].地质科技情报,2008,27(2):85-90.
[16]宁宝英,何元庆,和献中,等.黑河流域水资源研究进展[J].中国沙漠,2008,28(6):1180-1185.
[17]申献辰.天然水化学[M].北京:中国环境科学出版社,1994:38-39.
[18]马金珠,李相虎,黄天明,等.石羊河流域水化学演化与地下水补给特征[J].资源科学,2005,27(3):117-122.
[19]耿雷华,黄永基,郦建强,等.西北内陆河流域水资源特点初析[J].水科学进展,2002,13(4):496-501.
[20]Fritz P,Drimmie R J,Frape S K,et al.The isotopic composition of precipitation and groundwater in Canada[C]//Isotope Techniques in Water Resources Development,1987:539-550.
No Suggested Reading articles found!