Please wait a minute...
img

Wechat

Adv search
JOURNAL OF DESERT RESEARCH  2012, Vol. 32 Issue (5): 1283-1290    DOI:
Biology and Soil     
Ecological Adaptation of Reaumuria Soongorica Root System Architecture to Arid Environment
SHAN Li-shan, LI Yi, DONG Qiu-lian, GENG Dong-mei
College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
Download:  PDF (1547KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The architecture parameters of Reaumuria soongorica root system at different habitats in Gansu Province, China were analyzed to examine its ecological adaptability to arid environment. Results show that: (1) Topological indices of R. soongorica root system are small at all the habitats, and root branching pattern tends to be dichotomous. The topological indices of R. soongorica root system gradually increase in the Minqin windblown sand region and the Zhangye gobi region in Hexi Corridor, which indicates that drought makes root branching pattern tend to be herringbone-like. (2) Fractal dimension values of R. soongorica root system all are small in the Minqin windblown sand region and the Zhangye gobi region in Hexi Corridor, and the values are 1.1778 and 1.1169, respectively, which indicates that the fractal characteristics are not obvious in these areas. While the fractal dimension values are relative large in Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau, which indicates that the R. soongorica root system has better fractal characteristics in this region than in the other regions. (3) Total branching ratios of the R. soongorica root system in arid region of Hexi Corridor are smaller than that in the Jiuzhoutai semi-arid hilly and gully region of the Loess Plateau. It shows that the root branching ability in the semi-arid region is stronger, and it decreases at some degree with drought increase. (4) The root link lengths of R. soongorica root system are long at all the habitats, but there are significant differences between the different habitats. The root link length at the Minqin windblown sand region is the longest. It is concluded that R. soongorica adapts to arid environment by decreasing  root branching, decreasing root overlap and increasing the root link length, which makes its root branching pattern tend to be herringbone-like to reduce compete degree in root internal environment for nutrients and to enhance root absorption rate to nutrients, and ensure the effective nutrition space, thus it can absorb enough water and nutrients in resource-poor settings to ensure its normal physiological requirements.
Key words:  topological indices      fractal dimension      fractal abundance      ecological adaptation      root architecture     
Received:  16 February 2012      Published:  20 September 2012
ZTFLH: 

Q944.54

 

Cite this article: 

DAN Li-shan, LI Yi, DONG Qiu-lian, GENG Dong-mei. Ecological Adaptation of Reaumuria Soongorica Root System Architecture to Arid Environment. JOURNAL OF DESERT RESEARCH, 2012, 32(5): 1283-1290.

URL: 

http://www.desert.ac.cn/EN/     OR     http://www.desert.ac.cn/EN/Y2012/V32/I5/1283

[1]孙栋元,赵成义,王丽娟,等.荒漠植物构型研究进展[J].水土保持研究,2011,18(5):281-287.

[2]Lynch J.Root architecture and plant productivity[J].Plant Physiology,1995,109(1):7-13.

[3]周艳松,王立群.星毛委陵菜根系构型对草原退化的生态适应[J].植物生态学报,2011,35(5):490-499.

[4]Tsakaldimi M,Tsitsoni T,Ganatsas P,et al.A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex[J].Plant and Soil,2009,324(1-2):103-113.

[5]陈世鍠,张昊,王立群,等.中国北方草地植物根系[M].长春:吉林大学出版社,2001.

[6]王义琴,张慧娟,白克智,等.分形几何在植物根系研究中的应用[J].自然杂志,1999,21(3):143-145.

[7]杨培岭,罗远培.冬小麦根系形态的分形特征[J].科学通报,1994,39(20):1911-1913.

[8]马新明,席磊,熊淑萍,等.大田期烟草根系构型参数的动态变化[J].应用生态学报,2006,17(3):373-376.

[9]冯斌,杨培岭.植物根系的分形及计算机模拟[J].中国农业大学学报,2000,5(2):96-99.

[10]王政权,郭大力.根系生态学[J].植物生态学报,2008,32(6):1213-1216.

[11]Glimskr A.Estimates of root system topology of five plant species grown at steady-state nutrition[J].Plant and Soil,2000,227(1-2):249-256.

[12]Bouma T J,Nielsen K L,Vanhal J,et al.Root system topology and diameter distribution of species from habitats differing in inundation frequency[J].Functional Ecology,2001,15(3):360-369.

[13]杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J].植物生态学报,2008,32(6):1268-1276.

[14]杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地几种植物根系分形特征[J].干旱区地理,2009,32(2):249-254.

[15]杨小林,张希明,单立山,等.塔克拉玛干沙漠腹地塔克拉玛干柽柳根系构筑型研究[J].干旱区研究,2008,25(5):660-667.

[16]Martínez-Sánchez J J,Ferrandis P,Trabaud L,et al.Comparative root system structure of post-fire Pinus halepensis Mill.and Cistus monspeliensis L.saplings[J].Plant Ecology,2003,168(2):309-320.

[17]陈鹏,潘晓玲.河西走廊地区植物的区系特征[J].植物研究,2001,21(1):24-29.

[18]刘家琼,邱明新,蒲锦春,等.我国荒漠典型超旱生植物——红砂[J].植物学报,1982,24(5):485-488.

[19]马茂华,孔令韶.新疆呼图壁绿洲外缘的琵琶柴生物生态学特性研究[J].植物生态学报,1998,22(3):237-244.

[20]黄培祐,聂湘萍.准噶尔盆地中部琵琶柴群落的生境研究[J].新疆大学学报,1988,5(3):66-71.

[21]种培芳,李毅,苏世平,等.红砂3个地理种群的光合特性及其影响因素[J].生态学报,2010,30(4):914-922.

[22]种培芳,李毅,苏世平.荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J].中国沙漠,2010,3(30):539-544.

[23]周海燕,谭会娟,张志山,等.红砂和珍珠对极端环境的生理响应与调节机制[J].中国沙漠,2012,32(1):24-32.

[24]周生荟,刘玉冰,谭会娟,等.荒漠植物红砂在持续干旱胁迫下的光保护机制研究[J].中国沙漠,2010,30(1):69-73.

[25]Oppelt A L,Kurth W,Dzierzonb H,et al.Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana[J].Annals of Forest Science,2000,57(5-6):463-475.

[26]Oppelt A L,Kurth W,Godbold D L.Contrasting rooting patterns of some arid-zone fruit tree species from Botswana-Ⅱ.Coarse root distribution[J].Agro Forestry Systems,2005,64(1):13-24.

[27]Fitter A H.The topology and geometry of plant root systems:Influence of watering rate on root system topology in Trifolium pratense[J].Annals of Botany,1986,58(1):91-101.

[28]Fitter A H.An architectural approach to the comparative ecology of plant root systems[J].New Phytologist,1987,106(1):61-77.

[29]Fitter A H,Stickland T R,Harvey M L,et al.Architectural analysis of plant root systems 1.Architectural correlates of exploitation efficiency[J].New Phytologist,1991,118(3):375-382.

[30]Fitter A H,Sticklabd T R.Architectural analysis of plant root systems 2.Influence of nutrient supply on architectural contrasting plant species[J].New Phytologist,1991,118(3):383-389.

[31]Oppelt A L,Kurth W,Godbold D L.Topology,scaling relations and Leonardos rule in root systems from African tree species[J].Tree Physiology,2001,21(2-3):117-128.

[32]Atsumi J,Yamauchi A,Kono Y.Fractal analysis of plant root systems[J].Annals of Botany,1989,64(5):499-503.

[33]Ketipearachchi K W,Tatsumi J.Local fractal dimension and multifractal analysis of the root system of legumes[J].Plant Production Science,2000,3(3):287-295.

[34]Berntson G M.The Characterization of topology:A comparison of four topological indices for rooted binary trees[J].Journal of Theoretical Biology,1995,177(3):271-281.

[35]Strahler A N.Hypsometric (area altitude) analysis of erosional topology[J].Geological Society of America Bulletin,1952,63(11):1117-1142.

[36]汪洪,金继运,山内章.以分维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系[J].作物学报,2008,34(9):1637-1643.

[37]Quijano-Guerta C,Kirk G J D,Portugal A M,et al.Tolerance of rice germplasm to zinc deficiency[J].Field Crops Research,2002,76(2):123-130.

[38]Berntson G M.Topological scaling and plant root system architecture:Developmental and functional hierarchies[J].New Phytologist,1997,135(4):621-634.

[39]廖成章,余翔华.分形理论在植物根系结构研究中的应用[J].江西农业大学学报,2001,23(2):192-196.

[40]杨培岭,任树梅,罗远培.分形曲线度量与根系形态的分形表征[J].中国农业科学,1999,32(1):89-92.

[41]高照全,张显川,王小伟.不同水分条件下桃树根系的分形特征[J].天津农业科学,2006,12(3):20-22.

[42]陈吉虎,余新晓,有祥亮,等.不同水分条件下银叶椴根系的分形特征[J].中国水土保持科学,2006,4(2):71-74.

[43]Kai L N,Carter R M,Douglas B,et al.Fractal geometry of root systems:Field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes[J].Plant and Soil,1999,206(2):181-190.

[44]木巴热克·阿尤普,陈亚宁,李卫红,等.极端干旱环境下的胡杨细根分布与土壤特征[J].中国沙漠,2011,31(6):1449-1458.

[45]张晓蕾,曾凡江,刘波,等.塔干沙漠南缘骆驼刺幼苗根系生长和分布对不同灌溉量的响应[J].中国沙漠,2011,31(6):1459-1466.

[46]刘健,贺晓,包海龙,等.毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系[J].中国沙漠,2010,30(6):1362-1366.
No Suggested Reading articles found!