img

官方微信

高级检索

中国沙漠, 2023, 43(2): 184-194 doi: 10.7522/j.issn.1000-694X.2022.00082

荒漠土壤氧化亚氮排放及其驱动因素研究进展

辛春明,1,2, 何明珠,1, 李承义1,2, 张力斌1,2, 李新荣1

1.中国科学院西北生态环境资源研究院 沙坡头沙漠研究试验站,甘肃 兰州 730000

2.中国科学院大学,北京 100049

A review of research progress on nitrous oxide emissions from desert soil and its driving factors

Xin Chunming,1,2, He Mingzhu,1, Li Chengyi1,2, Zhang Libin1,2, Li Xinrong1

1.Shapotou Desert Research and Experiment Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China

2.University of Chinese Academy of Sciences,Beijing 100049,China

通讯作者: 何明珠(E-mail: hmzecology@lzb.ac.cn

收稿日期: 2022-06-02   修回日期: 2022-07-19  

基金资助: 中国科学院战略性先导科技专项.  XDA2003010301
国家自然科学基金项目.  41671103
宁夏回族自治区交通厅项目.  WMKY1

Received: 2022-06-02   Revised: 2022-07-19  

作者简介 About authors

辛春明(1993—),男,河北广宗人,博士研究生,主要从事土壤氧化亚氮排放研究E-mail:xin_chunming@163.com , E-mail:xin_chunming@163.com

摘要

氧化亚氮(N2O)具有寿命长、增温潜势高且对臭氧层破坏性大等特点,陆地生态系统是其产生的主要来源。温度升高、降水变化以及由此引起的土壤中多种生物过程的改变,会促进或抑制N2O排放,进而对环境产生深远影响。基于此,本文回顾和总结了有关国内外荒漠区土壤N2O排放的研究进展,分析了荒漠土壤N2O的产生-排放过程及排放通量,并详细综述了环境因子、土壤生物和非生物因素对荒漠土壤N2O排放的影响机制。结果表明:荒漠土壤N2O排放由硝化作用和反硝化作用主导,且具有明显的季节特征,具体表现为生长季排放量高,非生长季排放量低甚至为负。在总结已有研究的基础上,展望了荒漠区土壤N2O排放的研究方向及亟待解决的问题:(1)基于同位素示踪技术及分子生物学技术探究微生物及相关功能基因对荒漠土壤N2O产生和消耗的影响;(2)探究不同时间尺度(日、月、季节以及年际)多因素交互作用下荒漠土壤N2O排放规律;(3)完善荒漠生态系统N2O排放模型,并评估其对环境变化的影响。

关键词: 荒漠生态系统 ; 气候变化 ; 硝化/反硝化作用 ; 排放通量 ; 功能基因

Abstract

Nitrous oxide (N2O) has the characteristics of long lifespan, high warming potential and great damage to the ozone layer. Terrestrial ecosystem is the main source of N2O. Global climate change lead to the change of temperature, rainfall and biological process in desert ecosystem, which will promote or inhibit N2O emissions and further influence of the environment. Therefore, this paper summarized the latest domestic and foreign researches on soil N2O emission in desert regions. We analyzed the production process and emission flux of N2O in desert soil, and further reviewed the effect of environmental factors and soil biological and abiotic factors on desert soil N2O emission. The soil N2O emission in desert ecosystems, dominated by nitrification and denitrification, has seasonal characteristics (high emissions in growing season and low emissions or absorb N2O in non-growing season). On the basis of the previous researches, some topics that need to be solved urgently in the research field about soil N2O emission are prospected at the end of this paper. The ideas and pathways solve these problems as follows: firstly, isotope tracer method and molecular biological technique should be used to explore the effects of soil micro-organisms and its related functional genes on N2O emissions and consumption in arid and semi-arid regions; secondly, investigate the patterns of N2O emissions in desert soils under the interaction of multiple factors at different time scales (daily, monthly, seasonal and interannual); thirdly, refine the N2O emission models in desert ecosystems and assess the impact of N2O emission on environmental change.

Keywords: desert ecosystems ; climate change ; nitrification/denitrification ; emission flux ; functional genes

PDF (984KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

辛春明, 何明珠, 李承义, 张力斌, 李新荣. 荒漠土壤氧化亚氮排放及其驱动因素研究进展. 中国沙漠[J], 2023, 43(2): 184-194 doi:10.7522/j.issn.1000-694X.2022.00082

Xin Chunming, He Mingzhu, Li Chengyi, Zhang Libin, Li Xinrong. A review of research progress on nitrous oxide emissions from desert soil and its driving factors. Journal of Desert Research[J], 2023, 43(2): 184-194 doi:10.7522/j.issn.1000-694X.2022.00082

0 引言

氧化亚氮(N2O)是大气中除二氧化碳(CO2)和甲烷(CH4)外的另一种重要的温室气体,其单分子增温潜势约为CO2的300倍1。有别于其他温室气体的是,N2O还能通过在平流层中发生一系列复杂的化学反应加剧臭氧层的破坏,导致地面紫外辐射增强并威胁人类的健康与生存2-4。目前,受人类活动和气候变化的影响,高温、干旱和极端降雨等事件导致土壤频繁地经历干旱和再湿润过程5,频繁的干湿交替会改变土壤水分及养分的可利用性和理化性质,进而影响土壤氮循环过程和温室气体的排放6-7。同时,化石燃料、资源过度利用等因素导致全球地表温度升高8,而荒漠区的地表温度据预测将增加更多9。因此,降水变化和气候变暖均会直接或间接影响荒漠土壤N2O排放过程。

荒漠生态系统植被稀疏且养分匮乏,气候条件表现为气温高、降水少且蒸发量大等。荒漠土壤中各种生物过程直接或间接地受降水驱动。荒漠区面积广袤,即使土壤环境对气候变化的微弱响应,也会引起温室气体排放量的显著变化。因此,揭示荒漠土壤N2O排放机制是荒漠生态系统研究的热点,目前的研究集中于土壤N2O排放对气候变化、氮添加和放牧的响应,且多从土壤性质和微生物角度解释土壤N2O排放变化1。除此之外,对土壤N2O产生的硝化和反硝化作用过程开展了大量研究,同时对N2O产生途径的硝酸盐异化还原为铵和非生物过程的研究也逐渐深入。随着分子生态学和同位素示踪理论和技术的发展,从土壤微生物功能基因的微观角度揭示了N2O产生的微生物驱动机理,并量化了土壤氮循环过程对N2O排放的影响及贡献,然而,目前相关技术在荒漠生态系统中的研究偏少。此外,目前N2O排放时间尺度的研究多在几周到数月,长期研究(例如3年以上)的案例较少。由于缺乏对荒漠区土壤N2O排放过程的深入系统研究,因此难以估算其对全球土壤N2O排放的贡献,这为估算全球土壤N2O排放总量及增温潜势带来了很大的不确定性。

荒漠土壤N2O的排放通量和排放量在不同研究中差异较大10-11。影响荒漠土壤N2O排放的因素复杂,如降水导致土壤水分变化进而影响土壤中细菌和真菌的种类和活性,从而影响土壤中氮素的转化以及N2O排放;气候变暖导致土壤温度的改变,通过影响微生物代谢活动和物质转换来影响N2O排放3-412-13;土壤有机碳和有机氮分别通过影响微生物能量供应和氮矿化速率影响N2O排放14-16;土壤质地和不同粒径土壤团聚体的养分供给、O2含量以及通气条件等方面的差异,也会导致N2O排放的波动1017。因此,亟待深入系统地开展荒漠生态系统土壤N2O排放过程及其影响机理的研究,为准确估算其对全球变化提供数据支撑。

1 荒漠土壤N2O产生过程及排放通量

1.1 N2O产生过程

N2O的排放来源有土壤、海洋和淡水湖泊,以及化石燃料燃烧等,其中土壤是N2O的主要排放源,约占总排放量的60%18。土壤排放N2O的主要原因是其中含有大量微生物,微生物可通过一系列复杂的生物化学过程产生N2O19,包括硝化作用(Nitrification)、反硝化作用(Denitrification)、硝酸盐异化还原成铵(Dissimilatory nitrate reduction to ammonium,DNRA)、硝化细菌反硝化作用(Nitrifier denitrification)。另外,土壤排放的N2O也可能来自于非生物分解等过程20-22

土壤N2O的产生过程主要有:①硝化作用,即在氨氧化细菌(AOB)和氨氧化古细菌(AOA)催化下将氨氧化成NO2-或NO3-的过程,此过程中生成副产物N2O23;②硝化-反硝化作用,即将铵氧化成NO2-,然后直接转化为NO,逐步还原为N2的过程24;③反硝化作用,即由异养细菌和古菌在厌氧环境下将硝酸盐和亚硝酸盐逐步还原成气态氮化合物的过程,最终产物为NO、N2O或N225;④硝酸盐异化还原为铵,即NO3-先被还原为NO2-,再进一步还原为铵的过程,此过程会产生N2O25;⑤非生物过程,即由于NO2-和NH2OH不稳定的化学性质,通过分解或化学反应生成N2O2426。上述N2O产生途径中,硝化和反硝化作用产生的N2O约占土壤释放总量的70%27

1.2 N2O排放通量

在全球范围内,荒漠区已经被确定为含氮气体重要的“源”28,究其原因,主要是发生自然降水后微生物代谢活性增强,促进了氮的快速周转29。尽管荒漠区土壤中含有的营养物质(C、N)有限,但这种氮的快速周转依然使其成为重要的N2O排放“源”。

在新疆古尔班通古特荒漠草原的研究表明,自然气候条件下N2O排放通量(以N计量)较低(0~3.46 μg·m-2·h-130,同时,此研究中2月的N2O通量为负值(-0.93 μg·m-2·h-1),表现为N2O的净吸收,这主要与土壤冰冻或积雪覆盖期N2O无法扩散至空气中,通过反硝化作用进一步还原为N2有关30。另一项在内蒙古半干旱温带草地的研究同样表明,自然气候条件下N2O排放速率变化较大,有时表现为负值(-0.36~3.46 μg·m-2·h-131

1.3 N2O排放量及其季节变化

N2O排放量在不同研究中具有明显的差异性,如在古尔班通古特沙漠进行1年和连续3年的野外观测研究表明,土壤N2O年排放量为0.13 kg·hm-2[3032。然而,在腾格里沙漠东南缘的研究表明,生物土壤结皮(Biological soil crust,BSC)的N2O年排放量为负值(平均为-1.44 kg·hm-2),表现为N2O年吸收10,这可能主要与结皮性质有关,相对致密且渗水性低的生物结皮不利于N2O向大气扩散,土壤微生物促使N2O向N2转化。不同研究中,土壤N2O排放速率及排放量见表110-1133-43

表1   不同研究中N2O排放通量和排放量

Table 1  N2O emission fluxes and emissions in different studies

生境类型植被类型土壤类型观测 时间年排放量 /(kg·hm-2)生长季排放量 占全年比重/%排放通量 /(μg·m-2·h-1)参考 文献
荒漠藻类结皮土全年-0.19-2.12(均值)[10]
藻类结皮土季节性-18.5~9.8[33]
苔藓结皮土全年-3.87-4.42(均值)[10]
苔藓结皮土季节性-15.5~4.5[33]
混生结皮土全年-0.27-3.12(均值)[10]
草本砂质土全年0.130~3.46[32]
牧草砂质土全年0.13431.49(均值)[30]
稀疏灌木,草本砂质土夏季0~8[11]
干旱草原草本砂质土全年0.2253-0.7~10.3[34]
草本砂质土生长季8.58(均值)[35]
半干旱草地草本砂质土生长季-0.14~46.62[36]
草本细壤土生长季0~400[37]
半干旱草原草本盐碱土生长季13.19018.7(均值)[38]
牧草砂质土生长季19.8(均值)[29]
草本砂质土生长季-0.34~0.12[39]
草本砂质土生长季2.8~3.9[40]
草本砂质土生长季3.4~12[41]
苔藓结皮土生长季-0.42~0.84[42]
草本砂质土生长季4(均值)[43]

“—”代表无相关数据。

新窗口打开| 下载CSV


荒漠土壤N2O排放具有明显的季节动态。在中国北方荒漠草原为期1年的观测结果表明,N2O排放通量整体表现为春夏季节较高(最大值为14.79 μg· m-2·h-1),冬季排放量较低甚至为负(最低值为-0.93 μg·m-2·h-130,这主要是由于生长季土壤在多次降水脉冲后反复经历干湿循环过程,干旱阶段土壤微生物主要以硝化作用产生N2O;短暂湿润阶段土壤微生物主要以反硝化作用产生N2O,同时适宜的温度也有助于增加微生物活性,因此生长季荒漠土壤产生较多的N2O(占全年的43%~90%)44;非生长季排放的N2O较少,主要与土壤含水量低、温度较低、微生物活性较低有关,同时冬季表层土壤冰冻或者被积雪覆盖导致N2O无法向大气扩散,故N2O排放减少10

2 荒漠土壤环境对N2O排放的影响机制

2.1 土壤有机碳

土壤有机碳是影响异养硝化细菌和反硝化细菌活性的重要因素14。荒漠土壤有机碳的主要来源为植物凋落物分解、根系分泌和微生物分泌、死亡残体释放45。自然降水后,雨水促进植物和生物结皮生长,有利于植物根系、生物结皮对土壤有机碳的输入;同时,土壤水势增加使得微生物承受较高的渗透压力,其中一部分微生物死亡释放出有机物质,另一部分通过释放大量易分解含碳化合物(包括小分子含碳化合物和可溶性碳)来适应迅速增加的土壤水势。有机碳可为微生物提供重要碳源16,有机碳供给增加一方面可加快微生物繁殖,消耗氧气从而形成厌氧环境促进反硝化作用发生,另一方面有机碳作为能量来源,促进微生物新陈代谢和物质循环,同时也为反硝化细菌提供电子从而促进反硝化作用46

2.2 土壤NO3--NNH4+-N含量

土壤中NH4+-N和NO3--N是硝化细菌和反硝化细菌利用的底物,二者在土壤中的含量是影响N2O排放的关键因素14。有研究表明,土壤中NH4+-N和NO3--N含量增加将显著促进N2O的排放,使N2O年排放量增加55%~133%30;同样,高有机氮含量(通过矿化作用将其转化为无机氮)也会促进N2O排放15。但是在半干旱草原的模拟实验表明土壤氮含量增加对N2O排放的促进作用有限,施加氮肥(NH4NO3)会增加土壤N2O排放量(与不施肥相比约增加30%);土壤NO3--N和NH4+-N含量的增加对N2O排放的促进作用弱于预期,这在很大程度上由植物-微生物对氮素的竞争所致,植物吸收了大部分的氮素1

2.3 土壤pH

土壤pH是影响硝化作用和反硝化作用的重要因素,进而也影响土壤N2O排放。当土壤pH为5.6~8.0时,硝化速率随pH的升高而增大。当土壤pH从4.7增加到6.5时,硝化速率增加可达3~5倍47,此时N2O主要由硝化作用产生;当土壤pH较低时,N2O成为反硝化作用的主要产物,其原因是低pH能抑制N2O还原酶的活性,从而增大N2O在反硝化产物中的比例。

pH影响参与氮转化的相关过程,如反硝化、自养和异养硝化,这些生物过程都与N2O的产生有关48。有研究指出,增加土壤pH促进N2O向N2的转化,整体表现为低N2O排放15,主要原因在于pH影响细菌和真菌活性,大多数最适宜反硝化微生物生长的pH为6.0~8.0的中性环境,在pH较高或较低时反硝化作用速率较低49-50。同时,pH也会通过调控AOA和AOB的群落结构影响N2O通量,例如AOB在中性、碱性土壤中占主导,而AOA在酸性土壤中占主导51

2.4 土壤O2 含量

土壤O2含量是影响土壤N2O排放的重要因素,参与硝化作用和反硝化作用的微生物对O2含量有一定的需求。硝化作用是严格的好氧过程,硝化微生物及相关酶类必须在有氧条件下才能正常进行硝化作用,随土壤O2含量降低,可增加硝化作用产物中N2O的比例52;相反,反硝化作用则是厌氧过程,仅在低氧或无氧的条件下发生,O2含量主要通过影响与反硝化作用相关的酶活性,进而影响N2O生成速率及其在反硝化产物中的比例。研究表明,当土壤中的O2含量低于5 mL·L-1时反硝化微生物的活性显著增加53,且反硝化微生物对O2含量的耐受范围较广,可在不同O2含量下产生N2O54

2.5 土壤质地

土壤中不同粒径组成造成土壤通透性差异较大,这对硝化作用和反硝化作用以及N2O扩散速率均有重要影响55,同时不同粒径土壤团聚体中养分差异对N2O产生也有重要影响56。荒漠区土壤砂粒含量普遍较高,但在不同生境斑块(如隐花植物、草本和灌木)中砂粒含量有所不同,其中流沙中砂粒含量最高、黏粒含量最低102957。相关研究表明,黏粒含量高的土壤N2O排放量较高,这主要与黏粒含量高的土壤保水能力强、孔隙度低以及O2含量低,有利于反硝化作用有关55。此外,不同粒径土壤团聚体对N2O的生成也有不同影响56,并且N2O排放量的研究结果存在差异58-59,这主要与不同粒径的土壤团聚体在通透性、营养物质含量和微生物分布等方面不同有关60

2.6 植被和土壤结皮类型

荒漠区植被具有明显的斑块性,其主要类型包括:一是由草本和灌木组成的植被类型;二是生物土壤结皮斑块,主要由地衣、苔藓、藻类等和土壤微生物组成,其特征是存在透水性弱的土壤表层。在荒漠区中一些豆科植物,如柠条(Caragana korshinskii)、花棒(Hedysarum scoparium)等及微生物(固氮蓝藻)本身具有固氮功能,为土壤贡献了显著的氮61,这对N2O排放也有重要影响。研究表明,灌木土壤,如矮梭梭属(Hammada sp.)、附药蓬属(Noaea sp.)和刺地榆属(Sarcopoterium sp.)的N2O排放量大于混生结皮土壤(由藻类和苔藓组成)61

有关不同类型生物土壤结皮的研究表明,藓类结皮、藻类结皮和混生结皮均表现为N2O负通量,即N2O净吸收,吸收量的大小为藓类结皮>混生结皮>藻类结皮10。也有研究发现,藻类结皮和藓类结皮生长季(4—10月)的吸收通量显著高于非生长季33。藓类结皮更易产生相对厌氧环境,促进了反硝化作用产生N2O,同时也阻止了N2O通过扩散从土壤进入大气,将N2O转化为N2,因此整体表现为N2O净吸收10。养分更为贫瘠的风沙土却表现为N2O净排放,即使在土壤最干燥的时期N2O也会排放到大气中17

综上,较高的有机碳含量可为细菌和真菌提供充足的能量来源;较高的有机氮含量会提升微生物的氮矿化速率,促进NH4+-N积累和硝化作用;较高的NO3--N含量和厌氧环境促进反硝化作用,导致N2O排放通量升高;土壤质地和不同粒径土壤团聚体在营养物质含量、O2含量以及通气性等方面的差异,也会导致N2O排放差异。因此,在N2O排放的相关研究中须首先考虑研究区域的土壤性质。

3 降水对荒漠土壤N2O排放的驱动作用

3.1 降水量对N2O排放的影响

目前,有关降水变化如何影响土壤N2O排放通量的研究大多聚焦于农田和森林生态系统62-64。研究表明,模拟增加降水的试验处理会刺激土壤排放N2O65。也有学者持相反的观点,认为增加降水不会改变N2O排放66,这主要取决于降水是否为该生态系统产生N2O的限制因子,如果降水是产生N2O的限制因子,增加降水会促使N2O排放;反之,则不会显著影响N2O排放。在新疆古尔班通古特荒漠草原的研究表明,增加降水(5 mm)未观察到N2O排放量的显著变化30。但也有研究表明,通过模拟增加降水可以增加或减少N2O通量3167-68。荒漠土壤对降水响应不显著的原因可能是:一方面由于高温和较高的蒸散率,非有效降水对荒漠土壤水分影响的持续时间较短32,并且土壤短暂的湿润过程无法保证微生物具有较高碳氮矿化的活性,营养物质积累较少;另一方面,自然降水后土壤水分渗透压的快速变化使得微生物死亡,导致参与N2O产生途径的微生物数目减少;土壤水分降低促进硝化作用与抑制反硝化作用相抵消69

3.2 降水频率对N2O排放的影响

水分是荒漠生态系统不同时空尺度各种生物过程的重要驱动因子。降水作为主要的水分来源,由于其间断性和不可预知性,导致土壤水分与养分等关键资源的获得也呈不连续的脉冲状态70。不同频率的降水脉冲导致土壤经历干湿循环,当土壤干燥且含水量降低时,碳氮可利用性和微生物活性较低,营养物质周转受到限制,N2O排放处于较低水平;土壤复湿后,碳氮可利用性和微生物活性较高,并激发土壤生物化学过程,并促进N2O排放3671。土壤湿度增加形成的厌氧条件也促进了反硝化作用产生N2O。同样,土壤频繁地经历干旱和湿润过程,也使硝化作用和反硝化作用交替进行,从而促进了N2O的产生和氮矿化(硝态氮和铵态氮的积累)4472。室内培养实验结果表明,不同降水频率(8天/18天)处理与恒湿处理相比,能够显著激发土壤N2O排放,排放量平均增加15倍72,主要原因是干湿交替增加了微生物的死亡并促进土壤释放营养物质,使得土壤中氮的矿化量增加73

4 温度变化对荒漠土壤N2O排放的影响

温度对N2O排放的影响有着广泛的微生物基础2074。研究表明,自养硝化和异养反硝化作用都是土壤N2O排放的主要原因,二者都是温度敏感型过程75-80,由不同的微生物类群主导2081。干旱草地土壤中AOB或AOA的丰度随温度升高而发生变化82,这主要由细菌和真菌对温度的敏感性不同所导致。温度是控制与N2O排放相关的微生物功能群体(主要是自养氨氧化菌和异养反硝化菌)的群落特征及其活动的重要因素83。研究表明,温度可以直接或间接地影响土壤N2O排放76。温度变化不仅影响微生物的相对丰度和总生物量,也影响其生理过程,即使在微生物群落结构和组成没有发生变化的情况下,与产生和消耗N2O相关基因的表达也可能发生改变;同时温度变化也会对反硝化酶动力学有直接的影响84。研究发现,随温度升高,N2O排放呈现不同的变化趋势77-7885。但大多数研究均表明,N2O排放与土壤温度呈正相关,适宜的温度使得微生物具有较高的新陈代谢速率,加速物质循环。

5 参与生成N2O的相关微生物及功能基因

5.1 参与生成N2O的相关微生物

微生物作为生态系统的分解者,在氮循环过程中发挥着核心作用。AOA和AOB是硝化作用的主要驱动者,二者也有着不同的生态位分化,AOA在氮含量低、酸性土壤条件下发挥主要作用,而AOB则相反86。参与反硝化的微生物广泛分布于古细菌、细菌和真菌中,而在酵母菌和放线菌中也有可参与反硝化作用的微生物类群86。同时,也发现部分好氧反硝化细菌,如副球菌属(Paracocccus sp)和芽孢杆菌属(Bacillus sp)等87

有研究关注微生物生物量碳/氮与土壤N2O排放的关系。结果表明:仅微生物生物量碳与土壤N2O排放具有显著正相关关系88,但也有研究表明仅微生物生物量氮与土壤N2O排放具有显著正相关关系89,这主要与营养物质含量是否有利于微生物代谢,使其更高效地参与物质循环有关。

5.2 参与生成N2O相关功能基因

许多与氮循环相关的功能基因,包括amoA (AOA和AOB)、nirSnirK、norBnosZ,是指示土壤N2O排放的潜在有效指标698490-91。其中,amoA (AOA)和amoB (AOB)基因编码蛋白为氨单加氧酶,主要参与土壤中的氨氧化过程91nirSnirK基因编码的蛋白为硝酸还原酶,其参与了NO3-向NO2-的转换,是反硝化作用(以及N2O生成)中的重要步骤92norB基因编码NO还原酶,该酶参与生成N2O;nosZ基因编码N2O还原酶,其丰度是指示N2O转化为N2的有效指标。因此,在厌氧条件下N2O排放量减少与nosZ基因表达增加有关93

温度和土壤湿度变化会影响微生物群落特征(群落结构和丰度,以及与N2O排放相关的功能基因)从而影响N2O排放,而在不同土壤中N2O排放的响应模式不同78-808294-97。例如,已被证明温度变化会改变草原7897、草甸94、森林96以及农田土壤95中的AOA和AOB的群落结构,相关研究表明无论是在amoA基因丰度还是微生物群落结构方面,AOA都与研究地点的土壤N2O排放呈正相关83;同时,在实验处理条件(不同土壤湿度)下,AOA在土壤N2O排放中发挥了重要作用8198。各功能基因参与荒漠土壤N2O形成过程如图1所示。

图1

图1   N2O形成途径及相关功能基因

Fig.1   Nitrous oxide formation pathway and related functional genes


6 土壤N2O排放模型及其在荒漠区的应用

利用模型模拟N2O排放能较全面地掌握和预测其排放量,但在应用前需进行实验验证。目前,有关模拟N2O排放的模型多应用于农田生态系统,相关模型有DNDC(Denitrification-decomposition model)模型、Ecosys(Ecosystem model)模型和WNMM(Water and nitrogen management model)模型99;其中,DNDC模型应用最为广泛,其需要的参数类型主要包括气象数据、土壤性质、植被类型和农田管理措施4个方面100,由于荒漠土壤植被稀疏也无土壤管理措施,单独利用DNDC模型不适用于模拟荒漠土壤N2O排放;相对而言WNMM模型主要用于干旱半干旱气候条件下农田土壤的N2O排放模拟,更适合于模拟荒漠土壤N2O排放,该模型需参数类型也主要包括气象数据、土壤性质、植被类型等,但着重关注水肥管理的影响101。由于荒漠地区植被类型单一并无人工水肥管理等,因此仅采用WNMM模型具有较多不确定因素。目前已有研究采用DNDC模型模拟荒漠区温室气体排放,发现该模型误差平均在20%以内102,因此在模型选用时可采取多模型结合(如DNDC模型+WNMM模型)和实验数据进行验证,以提高模型模拟的准确性。

7 结论与展望

目前,有关土壤N2O排放及驱动因素取得的主要结论:①温度和降水通过影响微生物活性和土壤碳氮可利用性等来影响土壤N2O排放;②降水后,土壤微生物参与的硝化/反硝化作用是N2O排放的主要途径,与土壤干旱时相比出现N2O排放高峰;③土壤性质会影响N2O排放,如土壤硝态氮、铵态氮含量和土壤有机质含量以及pH等;④结皮土具有透水性弱的土壤表层,不利于N2O向大气扩散,多表现为N2O负排放。

基于以上有关N2O排放及驱动因素的总结,结合当前国内外研究重点及新技术的应用(分子生物学、同位素示踪技术以及模型构建等)对N2O排放及驱动因素的研究方向和研究内容提出如下展望:①现有研究多聚焦于1种或2种环境因子对N2O排放的影响,今后需考虑多种因子(温度、降水、氮沉降和放牧等)协同作用对N2O排放的影响,同时需增加研究时间尺度,充分掌握长时间尺度下荒漠土壤N2O排放以及对多种环境因子变化的响应规律。②基于同位素示踪技术,区分N2O产生的微生物途径以及各过程所占比重。今后需重点测定δ15Nsp等N2O同位素特征值分馏效应,利用组合同位素特征值对N2O进行全面的溯源研究。③基于分子生物学技术探究AOA和AOB生物群落以及相关功能基因(amoA (AOA和AOB)、nirSnirKnorBnosZ等)对N2O产生和消耗的影响。④完善WNMM和DNDC模型,利用模型模拟荒漠土壤N2O排放规律,用于准确评估其对环境变化的响应。基于野外原位研究和室内培养实验,很难实现基于中国乃至全球尺度模拟荒漠土壤N2O排放模式,因此急需建立和完善模型解决此难题。总而言之,荒漠土壤N2O排放规律是一个重要且有待深入研究的课题,随着技术推进和方法更新,更加深入地解析其内在机制,从而为控制全球变暖及温室气体排放提供部分理论依据。

参考文献

Shi Y JWang J FAo Y Net al.

Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regimes and co-occurring wet N deposition in a semi-arid grassland

[J].Global Change Biology,20212719):4894-4908.

[本文引用: 3]

Ravishankara A RDaniel J SPortmann R W.

Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century

[J].Science,20093265949):123-125.

[本文引用: 1]

Banerjee SHelgason BWang L Fet al.

Legacy effects of soil moisture on microbial community structure and N2O emissions

[J].Soil Biology & Biochemistry,20169540-50.

[本文引用: 1]

Krichels ADeLucia E HSanford Ret al.

Historical soil drainage mediates the response of soil greenhouse gas emissions to intense precipitation events

[J].Biogeochemistry,20191423):425-442.

[本文引用: 2]

Seneviratne S ILuthi DLitschi Met al.

Land-atmosphere coupling and climate change in Europe

[J].Nature,20064437108):205-209.

[本文引用: 1]

De Graaff M ASix JHarris Det al.

Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2:impact on C cycling and modeling

[J].Global Change Biology,20041011):1922-1935.

[本文引用: 1]

Huygens DSchouppe JRoobroeck Det al.

Drying-rewetting effects on N cycling in grassland soils of varying microbial community composition and management intensity in south central Chile

[J].Applied Soil Ecology,2011483):270-279.

[本文引用: 1]

Masson-Delmotte VZhai PPirani Aet al.IPCC,Climate Change 2021:The Physical Science Basis.

Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

[M].Cambridge,UKCambridge Univerisity Press2021.

[本文引用: 1]

AghaKouchak ACheng L YMazdiyasni Oet al.

Global warming and changes in risk of concurrent climate extremes:Insights from the 2014 California drought

[J].Geophysical Research Letters,20144124):8847-8852.

[本文引用: 1]

徐冰鑫胡宜刚张志山.

模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响

[J].植物生态学报,2014388):809-820.

[本文引用: 11]

Yue PZuo X ALi K Het al.

The driving effect of nitrogen-related functional microorganisms under water and nitrogen addition on N2O emission in a temperate desert

[J].Science of the Total Environment,20217723):145470.

[本文引用: 3]

Prieme AChristensen S.

Natural perturbations,drying-wetting and freezing-thawing cycles,and the emission of nitrous oxide,carbon dioxide and methane from farmed organic soils

[J].Soil Biology & Biochemistry,20013315):2083-2091.

[本文引用: 1]

Liu S WZheng Y JMa R Yet al.

Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming

[J].Global Change Biology,2020268):4601-4613.

[本文引用: 1]

Aamer MShaaban MHassan M Uet al.

Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH

[J].Journal of Environmental Management,2020255109891.

[本文引用: 3]

Cheng YZhang H MChen Z Xet al.

Contrasting effects of different pH-raising materials on N2O emissions in acidic upland soils

[J].European Journal of Soil Science,2021721):432-445.

[本文引用: 2]

Pinto RWeigelhofer GPucher Met al.

Dry-wet cycles affect nitrous oxide emissions across aquatic-terrestrial interfaces:a mesocosms study

[J].Frontiers in Soil Science,20222.

[本文引用: 2]

Billings S ASchaeffer S MEvans R D.

Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2

[J].Soil Biology & Biochemistry,20023411):1777-1784.

[本文引用: 2]

Tian H QXu R TCanadell J Get al.

A comprehensive quantification of global nitrous oxide sources and sinks

[J].Nature,20205867828):248-256.

[本文引用: 1]

Clark I MBuchkina NJhurreea Det al.

Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the broadbalk wheat experiment

[J].Philosophical Transactions of the Royal Society B-Biological Sciences,20123671593):1235-1244.

[本文引用: 1]

Butterbach-Bahl KBaggs E MDannenmann Met al.

Nitrous oxide emissions from soils:how well do we understand the processes and their controls?

[J].Philosophical Transactions of the Royal Society B-Biological Sciences,20133681621):20130122.

[本文引用: 3]

Kuypers M M MMarchant H KKartal B.

The microbial nitrogen-cycling network

[J].Nature Reviews Microbiology,2018165):263-276.

Stein L Y.

The long-term relationship between microbial metabolism and greenhouse gases

[J].Trends in Microbiology,2020286):500-511.

[本文引用: 1]

Levy-Booth D JPrescott C EGrayston S J.

Microbial functional genes involved in nitrogen fixation,nitrification and denitrification in forest ecosystems

[J].Soil Biology & Biochemistry,20147511-25.

[本文引用: 1]

Heil JVereecken HBruggemann N.

A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil

[J].European Journal of Soil Science,2016671):23-39.

[本文引用: 2]

Tiedje J M.

Ecology of denitrification and dissimilatory nitrate reduction to ammonium

[J].Environmental Microbiology of Anaerobes,1988,April:179-244.

[本文引用: 2]

Zhu-Barker XCavazos A ROstrom N Eet al.

The importance of abiotic reactions for nitrous oxide production

[J].Biogeochemistry,20151263):251-267.

[本文引用: 1]

Huang YLong X E.

Contribution of fungi to soil nitrous oxide emission and their research methods:a review

[J].Chinese Journal of Applied Ecology,2014254):1213-1220.

[本文引用: 1]

Hudman R CMoore N EMebust A Ket al.

Steps towards a mechanistic model of global soil nitric oxide emissions:implementation and space based-constraints

[J].Atmospheric Chemistry and Physics,20121216):7779-7795.

[本文引用: 1]

Delon CGaly-Lacaux CSerca Det al.

Soil and vegetation-atmosphere exchange of NO,NH3,and N2O from field measurements in a semi arid grazed ecosystem in Senegal

[J].Atmospheric Environment,201715636-51.

[本文引用: 3]

Yue PCui X QWu W Cet al.

Are annual nitrous oxide fluxes sensitive to warming and increasing precipitation in the Gurbantunggut Desert?

[J].Land Degradation & Development,2021323):1213-1223.

[本文引用: 7]

Liu X CDong Y SQi Y Cet al.

Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia,China

[J].Soil & Tillage Research,20151519-17.

[本文引用: 2]

Yue PCui X QGong Y Met al.

Fluxes of N2O,CH4 and soil respiration as affected by water and nitrogen addition in a temperate desert

[J].Geoderma,2019337770-772.

[本文引用: 3]

Hu YXu BWang Yet al.

Reference for different sensitivities of greenhouse gases effluxes to warming climate among types of desert biological soil crust

[J].Science of the Total Environment,2022830154805.

[本文引用: 4]

Wang Z WHao X YShan Det al.

Influence of increasing temperature and nitrogen input on greenhouse gas emissions from a desert steppe soil in Inner Mongolia

[J].Soil Science and Plant Nutrition,2011574):508-518.

[本文引用: 1]

Guilbault M RMatthias A D.

Emissions of N2O from Sonoran desert and effluent-irrigated grass ecosytems

[J].Journal of Arid Environments,1998381):87-98.

[本文引用: 1]

Leitner SHomyak P MBlankinship J Cet al.

Linking NO and N2O emission pulses with the mobilization of mineral and organic N upon rewetting dry soils

[J].Soil Biology & Biochemistry,2017115461-466.

[本文引用: 2]

Norton UMosier A RMorgan J Aet al.

Moisture pulses,trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming,USA

[J].Soil Biology & Biochemistry,2008406):1421-1431.

[本文引用: 1]

徐万玲.

氮沉降、放牧和极端降水对羊草草地N2O排放的影响机制研究

[D].长春东北师范大学2021.

[本文引用: 1]

Dijkstra F AMorgan J AFollett R Fet al.

Climate change reduces the net sink of CH4 and N2O in a semiarid grassland

[J].Global Change Biology,2013196):1816-1826.

[本文引用: 1]

Bork E WAttaeian BCahill A Eet al.

Soil nitrogen and greenhouse gas dynamics in a temperate grassland under experimental warming and defoliation

[J].Soil Science Society of America Journal,2019833):780-790.

[本文引用: 1]

Li L FFan W YKang X Met al.

Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland

[J].Atmospheric Environment,201614232-42.

[本文引用: 1]

Lafuente ADuran JDelgado-Baquerizo Met al.

Biocrusts modulate responses of nitrous oxide and methane soil fluxes to simulated climate change in a mediterranean dryland

[J].Ecosystems,2020238):1690-1701.

[本文引用: 1]

Chen W WZheng X HChen Qet al.

Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia,China

[J].Geoderma,2013192335-340.

[本文引用: 2]

Yemadje P LChevallier TGuibert Het al.

Wetting-drying cycles do not increase organic carbon and nitrogen mineralization in soils with straw amendment

[J].Geoderma,201730468-75.

[本文引用: 2]

Wang BHuang YLi Net al.

Initial soil formation by biocrusts:nitrogen demand and clay protection control microbial necromass accrual and recycling

[J].Soil Biology & Biochemistry,2022167108607.

[本文引用: 1]

Huang RWang Y YLiu Jet al.

Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils

[J].Applied Soil Ecology,201913757-68.

[本文引用: 1]

Deklein C A MVanlogtestijn R S P.

Denitrification in the top-soil of managed grasslands in the netherlands in relation to soil type and fertilizer level

[J].Plant and Soil,19941631):33-44.

[本文引用: 1]

Zhang J BMuller CCai Z C.

Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils

[J].Soil Biology & Biochemistry,201584199-209.

[本文引用: 1]

Cuhel JSimek MLaughlin R Jet al.

Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity

[J].Applied and Environmental Microbiology,2010766):1870-1878.

[本文引用: 1]

Paul E AClark F E.Soil Microbiology and Biochemistry[M].Pittsburgh,USAacademic Press1989147-163.

[本文引用: 1]

Yao H YCampbell C DChapman S Jet al.

Multi-factorial drivers of ammonia oxidizer communities:evidence from a national soil survey

[J].Environmental Microbiology,2013159):2545-2556.

[本文引用: 1]

Anderson I CPoth MHomstead Jet al.

A comparison of NO and N2O production by the autotrophic nitrifier nitrosomonas-europaea and the heterotrophic nitrifier alcaligenes-faecalis

[J].Applied and Environmental Microbiology,19935911):3525-3533.

[本文引用: 1]

Ye R WAverill B ATiedje J M.

Denitrification:production and consumption of nitric oxide

[J].Applied & Environmental Microbiology,1994604):1053-1058.

[本文引用: 1]

Zhu XBurger MDoane T Aet al.

Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability

[J].Proceedings of the National Academy of Sciences of the United States of America,201311016):6328-6333.

[本文引用: 1]

彭世彰杨士红丁加丽.

农田土壤N2O排放的主要影响因素及减排措施研究进展

[J].河海大学学报(自然科学版),2009371):1-6.

[本文引用: 2]

Austin A TYahdjian LStark J Met al.

Water pulses and biogeochemical cycles in arid and semiarid ecosystems

[J].Oecologia,20041412):221-235.

[本文引用: 2]

Cantarel A A MBloor J M GPommier Tet al.

Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem

[J].Global Change Biology,2012188):2520-2531.

[本文引用: 1]

Khalil KRenault PMary B.

Effects of transient anaerobic conditions in the presence of acetylene on subsequent aerobic respiration and N2O emission by soil aggregates

[J].Soil Biology & Biochemistry,2005377):1333-1342.

[本文引用: 1]

Wang BBrewer P EShugart H Het al.

Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases:a concept

[J].Global Change Biology,2019252):373-385.

[本文引用: 1]

Sey B KManceur A MWhalen J Ket al.

Small-scale heterogeneity in carbon dioxide,nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil

[J].Soil Biology & Biochemistry,2008409):2468-2473.

[本文引用: 1]

Zaady EGroffman P MStanding Det al.

High N2O emissions in dry ecosystems

[J].European Journal of Soil Biology,2013591-7.

[本文引用: 2]

Reay D SDavidson E ASmith K Aet al.

Global agriculture and nitrous oxide emissions

[J].Nature Climate Change,201226):410-416.

[本文引用: 1]

Kuang WGao XTenuta Met al.

A global meta-analysis of nitrous oxide emission from drip irrigated cropping system

[J].Global Change Biology,20212714):1-13.

Gallarotti NBarthel MVerhoeven Eet al.

In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis

[J].ISME Journal,20211511):3357-3374.

[本文引用: 1]

Zhang HDeng QSchadt C Wet al.

Precipitation and nitrogen application stimulation soil nitrous oxide emission

[J].Nutrient Cycling in Agroecosystems,20211207828):363-378.

[本文引用: 1]

Gao J QDuan M YZhang X Yet al.

Effects of frequency and intensity of drying-rewetting cycles on Hydrocotyle vulgaris growth and greenhouse gas emissions from wetland microcosms

[J].Catena,20181641):44-49.

[本文引用: 1]

Chen JXiao G LKuzyakov Y Ket al.

Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest

[J].Biogeosciences,2017149):2513-2525.

[本文引用: 1]

Li JJin Y QLiu Y Tet al.

Effects of precipitation exclusion on N2O emissions in a savanna ecosystem in SW China

[J].Atmospheric Environment,20181871-8.

[本文引用: 1]

Chen Y LKou DLi Fet al.

Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions

[J].Plant and Soil,20194341/2):453-466.

[本文引用: 2]

Yang YLi TWang Y Qet al.

Negative effects of multiple global change factors on soil microbial diversity

[J].Soil Biology & Biochemistry,2021156108229.

[本文引用: 1]

Gao D CBai ELi M Het al.

Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles:a meta-analysis

[J].Soil Biology & Biochemistry,2020148107896.

[本文引用: 1]

Beare M HGregorich E GSt-Georges P.

Compaction effects on CO2 and N2O production during drying and rewetting of soil

[J].Soil Biology & Biochemistry,2009413):611-621.

[本文引用: 2]

Fierer NSchimel J P.

Effects of drying-rewetting frequency on soil carbon and nitrogen transformations

[J].Soil Biology & Biochemistry,2002346):777-787.

[本文引用: 1]

Braker GR.Diversity Conradstructureand size of N 2

O-producing microbial communities in soils:What matters for their functioning?

[J].Advances in Applied Microbiology,2011,7533-70.

[本文引用: 1]

Verstraete WFocht D D.Biochemical Ecology of Nitrification and Denitrification[M].Boston,MA,USASpringer US1977135-214.

[本文引用: 1]

Smith K A.

The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils

[J].Global Change Biology,199734):327-338.

[本文引用: 1]

Godde MConrad R.

Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils

[J].Biology and Fertility of Soils,19993033-40.

[本文引用: 1]

Avrahami SBohannan B J M.

N2O emission rates in a California meadow soil are influenced by fertilizer level,soil moisture and the community structure of ammonia-oxidizing bacteria

[J].Global Change Biology,2009153):643-655.

[本文引用: 3]

Braker GSchwarz JConrad R.

Influence of temperature on the composition and activity of denitrifying soil communities

[J].FEMS Microbiology Ecology,2010731):134-148.

Cui P YFan F LYin Cet al.

Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes

[J].Soil Biology & Biochemistry,201693131-141.

[本文引用: 2]

Hu H WChen DHe J Z.

Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates

[J].FEMS Microbiology Reviews,2015395):729-749.

[本文引用: 2]

Horz H PBarbrook AField C Bet al.

Ammonia-oxidizing bacteria respond to multifactorial global change

[J].Proceedings of the National Academy of Sciences of the United States of America,200410142):15136-15141.

[本文引用: 2]

Yin CFan F LSong A Let al.

The response patterns of community traits of N2O emission-related functional guilds to temperature across different arable soils under inorganic fertilization

[J].Soil Biology & Biochemistry,201710865-77.

[本文引用: 2]

Billings S ATiemann L K.

Warming-induced enhancement of soil N2O efflux linked to distinct response times of genes driving N2O production and consumption

[J].Biogeochemistry,20141191/3):371-386.

[本文引用: 2]

Dobbie K ESmith K A.

The effects of temperature,water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol

[J].European Journal of Soil Science,2001524):667-673.

[本文引用: 1]

方晶晶马传明刘存富.

反硝化细菌研究进展

[J].环境科学与技术,201033():206-210.

[本文引用: 2]

丁炜朱亮徐京.

好氧反硝化菌及其在生物处理与修复中的应用研究进展

[J].应用与环境生物学报,2011176):923-929.

[本文引用: 1]

张耀全马欣罗珠珠.

苜蓿种植年限对土壤硝化潜势和氨氧化微生物丰度的影响

[J].干旱地区农业研究,2020385):39-44.

[本文引用: 1]

申颜孙建平罗玉坤.

短期放牧对半干旱草地生态系统CO2和N2O排放的影响

[J].环境科学,20183911):5237-5245.

[本文引用: 1]

Tang Y QYu G RZhang X Yet al.

Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils

[J].Science of the Total Environment,2019647653-662.

[本文引用: 1]

Li S QSong L NGao Xet al.

Microbial abundances predict methane and nitrous oxide fluxes from a windrow composting system

[J].Frontiers in Microbiology,201781-15.

[本文引用: 2]

Zumft W G.

Cell biology and molecular basis of denitrification

[J].Microbiology and Molecular Biology Reviews,1997614):533-616.

[本文引用: 1]

Zhong LZhou X QWang Y Fet al.

Mixed grazing and clipping is beneficial to ecosystem recovery but may increase potential N2O emissions in a semi-arid grassland

[J].Soil Biology & Biochemistry,201711442-51.

[本文引用: 1]

Avrahami SLiesack WConrad R.

Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers

[J].Environmental Microbiology,200358):691-705.

[本文引用: 2]

Tourna MFreitag T ENicol G Wet al.

Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms

[J].Environmental Microbiology,2008105):1357-1364.

[本文引用: 1]

Szukics UAbell G C JHodl Vet al.

Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil

[J].FEMS Microbiology Ecology,2010723):395-406.

[本文引用: 1]

Hu H WMacdonald C ATrivedi Pet al.

Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems

[J].Soil Biology & Biochemistry,2016921-15.

[本文引用: 2]

Jung M YWell RMin Det al.

Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils

[J].ISME Journal,201485):1115-1125.

[本文引用: 1]

Thomas A R CBond A JHiscock K M.

A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water,carbon and nitrogen cycling

[J].Global Change Biology Bioenergy,201353):227-242.

[本文引用: 1]

Li C S.

Modeling trace gas emissions from agricultural ecosystems

[J].Nutrient Cycling in Agroecosystems,2000581/3):259-276.

[本文引用: 1]

Li YWhite RChen D Let al.

A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain

[J].Ecological Modelling,20072033/4):395-423.

[本文引用: 1]

李东丽.

基于DNDC模型的干旱区水稻田温室气体排放实验研究:以乌鲁木齐市米东区为例

[D].乌鲁木齐新疆大学2021.

[本文引用: 1]

/