中国沙漠 ›› 2023, Vol. 43 ›› Issue (2): 184-194.DOI: 10.7522/j.issn.1000-694X.2022.00082
• • 上一篇
辛春明1,2(), 何明珠1(
), 李承义1,2, 张力斌1,2, 李新荣1
收稿日期:
2022-06-02
修回日期:
2022-07-19
出版日期:
2023-03-20
发布日期:
2023-04-12
通讯作者:
何明珠
作者简介:
何明珠(E-mail: hmzecology@lzb.ac.cn)基金资助:
Chunming Xin1,2(), Mingzhu He1(
), Chengyi Li1,2, Libin Zhang1,2, Xinrong Li1
Received:
2022-06-02
Revised:
2022-07-19
Online:
2023-03-20
Published:
2023-04-12
Contact:
Mingzhu He
摘要:
氧化亚氮(N2O)具有寿命长、增温潜势高且对臭氧层破坏性大等特点,陆地生态系统是其产生的主要来源。温度升高、降水变化以及由此引起的土壤中多种生物过程的改变,会促进或抑制N2O排放,进而对环境产生深远影响。基于此,本文回顾和总结了有关国内外荒漠区土壤N2O排放的研究进展,分析了荒漠土壤N2O的产生-排放过程及排放通量,并详细综述了环境因子、土壤生物和非生物因素对荒漠土壤N2O排放的影响机制。结果表明:荒漠土壤N2O排放由硝化作用和反硝化作用主导,且具有明显的季节特征,具体表现为生长季排放量高,非生长季排放量低甚至为负。在总结已有研究的基础上,展望了荒漠区土壤N2O排放的研究方向及亟待解决的问题:(1)基于同位素示踪技术及分子生物学技术探究微生物及相关功能基因对荒漠土壤N2O产生和消耗的影响;(2)探究不同时间尺度(日、月、季节以及年际)多因素交互作用下荒漠土壤N2O排放规律;(3)完善荒漠生态系统N2O排放模型,并评估其对环境变化的影响。
中图分类号:
辛春明, 何明珠, 李承义, 张力斌, 李新荣. 荒漠土壤氧化亚氮排放及其驱动因素研究进展[J]. 中国沙漠, 2023, 43(2): 184-194.
Chunming Xin, Mingzhu He, Chengyi Li, Libin Zhang, Xinrong Li. A review of research progress on nitrous oxide emissions from desert soil and its driving factors[J]. Journal of Desert Research, 2023, 43(2): 184-194.
生境类型 | 植被类型 | 土壤类型 | 观测 时间 | 年排放量 /(kg·hm-2) | 生长季排放量 占全年比重/% | 排放通量 /(μg·m-2·h-1) | 参考 文献 |
---|---|---|---|---|---|---|---|
荒漠 | 藻类 | 结皮土 | 全年 | -0.19 | — | -2.12(均值) | [ |
藻类 | 结皮土 | 季节性 | — | — | -18.5~9.8 | [ | |
苔藓 | 结皮土 | 全年 | -3.87 | — | -4.42(均值) | [ | |
苔藓 | 结皮土 | 季节性 | — | — | -15.5~4.5 | [ | |
混生 | 结皮土 | 全年 | -0.27 | — | -3.12(均值) | [ | |
草本 | 砂质土 | 全年 | 0.13 | — | 0~3.46 | [ | |
牧草 | 砂质土 | 全年 | 0.13 | 43 | 1.49(均值) | [ | |
稀疏灌木,草本 | 砂质土 | 夏季 | — | — | 0~8 | [ | |
干旱草原 | 草本 | 砂质土 | 全年 | 0.22 | 53 | -0.7~10.3 | [ |
草本 | 砂质土 | 生长季 | — | — | 8.58(均值) | [ | |
半干旱草地 | 草本 | 砂质土 | 生长季 | — | — | -0.14~46.62 | [ |
草本 | 细壤土 | 生长季 | — | — | 0~400 | [ | |
半干旱草原 | 草本 | 盐碱土 | 生长季 | 13.1 | 90 | 18.7(均值) | [ |
牧草 | 砂质土 | 生长季 | — | — | 19.8(均值) | [ | |
草本 | 砂质土 | 生长季 | — | — | -0.34~0.12 | [ | |
草本 | 砂质土 | 生长季 | — | — | 2.8~3.9 | [ | |
草本 | 砂质土 | 生长季 | — | — | 3.4~12 | [ | |
苔藓 | 结皮土 | 生长季 | — | — | -0.42~0.84 | [ | |
草本 | 砂质土 | 生长季 | — | — | 4(均值) | [ |
表1 不同研究中N2O排放通量和排放量
Table 1 N2O emission fluxes and emissions in different studies
生境类型 | 植被类型 | 土壤类型 | 观测 时间 | 年排放量 /(kg·hm-2) | 生长季排放量 占全年比重/% | 排放通量 /(μg·m-2·h-1) | 参考 文献 |
---|---|---|---|---|---|---|---|
荒漠 | 藻类 | 结皮土 | 全年 | -0.19 | — | -2.12(均值) | [ |
藻类 | 结皮土 | 季节性 | — | — | -18.5~9.8 | [ | |
苔藓 | 结皮土 | 全年 | -3.87 | — | -4.42(均值) | [ | |
苔藓 | 结皮土 | 季节性 | — | — | -15.5~4.5 | [ | |
混生 | 结皮土 | 全年 | -0.27 | — | -3.12(均值) | [ | |
草本 | 砂质土 | 全年 | 0.13 | — | 0~3.46 | [ | |
牧草 | 砂质土 | 全年 | 0.13 | 43 | 1.49(均值) | [ | |
稀疏灌木,草本 | 砂质土 | 夏季 | — | — | 0~8 | [ | |
干旱草原 | 草本 | 砂质土 | 全年 | 0.22 | 53 | -0.7~10.3 | [ |
草本 | 砂质土 | 生长季 | — | — | 8.58(均值) | [ | |
半干旱草地 | 草本 | 砂质土 | 生长季 | — | — | -0.14~46.62 | [ |
草本 | 细壤土 | 生长季 | — | — | 0~400 | [ | |
半干旱草原 | 草本 | 盐碱土 | 生长季 | 13.1 | 90 | 18.7(均值) | [ |
牧草 | 砂质土 | 生长季 | — | — | 19.8(均值) | [ | |
草本 | 砂质土 | 生长季 | — | — | -0.34~0.12 | [ | |
草本 | 砂质土 | 生长季 | — | — | 2.8~3.9 | [ | |
草本 | 砂质土 | 生长季 | — | — | 3.4~12 | [ | |
苔藓 | 结皮土 | 生长季 | — | — | -0.42~0.84 | [ | |
草本 | 砂质土 | 生长季 | — | — | 4(均值) | [ |
1 | Shi Y J, Wang J F, Ao Y N,et al.Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regimes and co-occurring wet N deposition in a semi-arid grassland[J].Global Change Biology,2021,27(19):4894-4908. |
2 | Ravishankara A R, Daniel J S, Portmann R W.Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J].Science,2009,326(5949):123-125. |
3 | Banerjee S, Helgason B, Wang L F,et al.Legacy effects of soil moisture on microbial community structure and N2O emissions[J].Soil Biology & Biochemistry,2016,95:40-50. |
4 | Krichels A, DeLucia E H, Sanford R,et al.Historical soil drainage mediates the response of soil greenhouse gas emissions to intense precipitation events[J].Biogeochemistry,2019,142(3):425-442. |
5 | Seneviratne S I, Luthi D, Litschi M,et al.Land-atmosphere coupling and climate change in Europe[J].Nature,2006,443(7108):205-209. |
6 | De Graaff M A, Six J, Harris D,et al.Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2:impact on C cycling and modeling[J].Global Change Biology,2004,10(11):1922-1935. |
7 | Huygens D, Schouppe J, Roobroeck D,et al.Drying-rewetting effects on N cycling in grassland soils of varying microbial community composition and management intensity in south central Chile[J].Applied Soil Ecology,2011,48(3):270-279. |
8 | Masson-Delmotte V, Zhai P, Pirani A,et al.IPCC,Climate Change 2021:The Physical Science Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge,UK:Cambridge Univerisity Press,2021. |
9 | AghaKouchak A, Cheng L Y, Mazdiyasni O,et al.Global warming and changes in risk of concurrent climate extremes:Insights from the 2014 California drought[J].Geophysical Research Letters,2014,41(24):8847-8852. |
10 | 徐冰鑫,胡宜刚,张志山,等.模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J].植物生态学报,2014,38(8):809-820. |
11 | Yue P, Zuo X A, Li K H,et al.The driving effect of nitrogen-related functional microorganisms under water and nitrogen addition on N2O emission in a temperate desert[J].Science of the Total Environment,2021,772(3):145470. |
12 | Prieme A, Christensen S.Natural perturbations,drying-wetting and freezing-thawing cycles,and the emission of nitrous oxide,carbon dioxide and methane from farmed organic soils[J].Soil Biology & Biochemistry,2001,33(15):2083-2091. |
13 | Liu S W, Zheng Y J, Ma R Y,et al.Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming[J].Global Change Biology,2020,26(8):4601-4613. |
14 | Aamer M, Shaaban M, Hassan M U,et al.Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH[J].Journal of Environmental Management,2020,255:109891. |
15 | Cheng Y, Zhang H M, Chen Z X,et al.Contrasting effects of different pH-raising materials on N2O emissions in acidic upland soils[J].European Journal of Soil Science,2021,72(1):432-445. |
16 | Pinto R, Weigelhofer G, Pucher M,et al.Dry-wet cycles affect nitrous oxide emissions across aquatic-terrestrial interfaces:a mesocosms study[J].Frontiers in Soil Science,2022,2. |
17 | Billings S A, Schaeffer S M, Evans R D.Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2 [J].Soil Biology & Biochemistry,2002,34(11):1777-1784. |
18 | Tian H Q, Xu R T, Canadell J G,et al.A comprehensive quantification of global nitrous oxide sources and sinks[J].Nature,2020,586(7828):248-256. |
19 | Clark I M, Buchkina N, Jhurreea D,et al.Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the broadbalk wheat experiment[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2012,367(1593):1235-1244. |
20 | Butterbach-Bahl K, Baggs E M, Dannenmann M,et al.Nitrous oxide emissions from soils:how well do we understand the processes and their controls?[J].Philosophical Transactions of the Royal Society B-Biological Sciences,2013,368(1621):20130122. |
21 | Kuypers M M M, Marchant H K, Kartal B.The microbial nitrogen-cycling network[J].Nature Reviews Microbiology,2018,16(5):263-276. |
22 | Stein L Y.The long-term relationship between microbial metabolism and greenhouse gases[J].Trends in Microbiology,2020,28(6):500-511. |
23 | Levy-Booth D J, Prescott C E, Grayston S J.Microbial functional genes involved in nitrogen fixation,nitrification and denitrification in forest ecosystems[J].Soil Biology & Biochemistry,2014,75:11-25. |
24 | Heil J, Vereecken H, Bruggemann N.A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil[J].European Journal of Soil Science,2016,67(1):23-39. |
25 | Tiedje J M.Ecology of denitrification and dissimilatory nitrate reduction to ammonium[J].Environmental Microbiology of Anaerobes,1988,April:179-244. |
26 | Zhu-Barker X, Cavazos A R, Ostrom N E,et al.The importance of abiotic reactions for nitrous oxide production[J].Biogeochemistry,2015,126(3):251-267. |
27 | Huang Y, Long X E.Contribution of fungi to soil nitrous oxide emission and their research methods:a review[J].Chinese Journal of Applied Ecology,2014,25(4):1213-1220. |
28 | Hudman R C, Moore N E, Mebust A K,et al.Steps towards a mechanistic model of global soil nitric oxide emissions:implementation and space based-constraints[J].Atmospheric Chemistry and Physics,2012,12(16):7779-7795. |
29 | Delon C, Galy-Lacaux C, Serca D,et al.Soil and vegetation-atmosphere exchange of NO,NH3,and N2O from field measurements in a semi arid grazed ecosystem in Senegal[J].Atmospheric Environment,2017,156:36-51. |
30 | Yue P, Cui X Q, Wu W C,et al.Are annual nitrous oxide fluxes sensitive to warming and increasing precipitation in the Gurbantunggut Desert?[J].Land Degradation & Development,2021,32(3):1213-1223. |
31 | Liu X C, Dong Y S, Qi Y C,et al.Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia,China[J].Soil & Tillage Research,2015,151:9-17. |
32 | Yue P, Cui X Q, Gong Y M,et al.Fluxes of N2O,CH4 and soil respiration as affected by water and nitrogen addition in a temperate desert[J].Geoderma,2019,337:770-772. |
33 | Hu Y, Xu B, Wang Y,et al.Reference for different sensitivities of greenhouse gases effluxes to warming climate among types of desert biological soil crust[J].Science of the Total Environment,2022,830:154805. |
34 | Wang Z W, Hao X Y, Shan D,et al.Influence of increasing temperature and nitrogen input on greenhouse gas emissions from a desert steppe soil in Inner Mongolia[J].Soil Science and Plant Nutrition,2011,57(4):508-518. |
35 | Guilbault M R, Matthias A D.Emissions of N2O from Sonoran desert and effluent-irrigated grass ecosytems[J].Journal of Arid Environments,1998,38(1):87-98. |
36 | Leitner S, Homyak P M, Blankinship J C,et al.Linking NO and N2O emission pulses with the mobilization of mineral and organic N upon rewetting dry soils[J].Soil Biology & Biochemistry,2017,115:461-466. |
37 | Norton U, Mosier A R, Morgan J A,et al.Moisture pulses,trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming,USA[J].Soil Biology & Biochemistry,2008,40(6):1421-1431. |
38 | 徐万玲.氮沉降、放牧和极端降水对羊草草地N2O排放的影响机制研究[D].长春:东北师范大学,2021. |
39 | Dijkstra F A, Morgan J A, Follett R F,et al.Climate change reduces the net sink of CH4 and N2O in a semiarid grassland[J].Global Change Biology,2013,19(6):1816-1826. |
40 | Bork E W, Attaeian B, Cahill A E,et al.Soil nitrogen and greenhouse gas dynamics in a temperate grassland under experimental warming and defoliation[J].Soil Science Society of America Journal,2019,83(3):780-790. |
41 | Li L F, Fan W Y, Kang X M,et al.Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland[J].Atmospheric Environment,2016,142:32-42. |
42 | Lafuente A, Duran J, Delgado-Baquerizo M,et al.Biocrusts modulate responses of nitrous oxide and methane soil fluxes to simulated climate change in a mediterranean dryland[J].Ecosystems,2020,23(8):1690-1701. |
43 | Chen W W, Zheng X H, Chen Q,et al.Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia,China[J].Geoderma,2013,192:335-340. |
44 | Yemadje P L, Chevallier T, Guibert H,et al.Wetting-drying cycles do not increase organic carbon and nitrogen mineralization in soils with straw amendment[J].Geoderma,2017,304:68-75. |
45 | Wang B, Huang Y, Li N,et al.Initial soil formation by biocrusts:nitrogen demand and clay protection control microbial necromass accrual and recycling[J].Soil Biology & Biochemistry,2022,167:108607. |
46 | Huang R, Wang Y Y, Liu J,et al.Variation in N2O emission and N2O related microbial functional genes in straw-and biochar-amended and non-amended soils[J].Applied Soil Ecology,2019,137:57-68. |
47 | Deklein C A M, Vanlogtestijn R S P.Denitrification in the top-soil of managed grasslands in the netherlands in relation to soil type and fertilizer level[J].Plant and Soil,1994,163(1):33-44. |
48 | Zhang J B, Muller C, Cai Z C.Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils[J].Soil Biology & Biochemistry,2015,84:199-209. |
49 | Cuhel J, Simek M, Laughlin R J,et al.Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity[J].Applied and Environmental Microbiology,2010,76(6):1870-1878. |
50 | Paul E A, Clark F E.Soil Microbiology and Biochemistry[M].Pittsburgh,USA:academic Press,1989:147-163. |
51 | Yao H Y, Campbell C D, Chapman S J,et al.Multi-factorial drivers of ammonia oxidizer communities:evidence from a national soil survey[J].Environmental Microbiology,2013,15(9):2545-2556. |
52 | Anderson I C, Poth M, Homstead J,et al.A comparison of NO and N2O production by the autotrophic nitrifier nitrosomonas-europaea and the heterotrophic nitrifier alcaligenes-faecalis[J].Applied and Environmental Microbiology,1993,59(11):3525-3533. |
53 | Ye R W, Averill B A, Tiedje J M.Denitrification:production and consumption of nitric oxide[J].Applied & Environmental Microbiology,1994,60(4):1053-1058. |
54 | Zhu X, Burger M, Doane T A,et al.Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(16):6328-6333. |
55 | 彭世彰,杨士红,丁加丽,等.农田土壤N2O排放的主要影响因素及减排措施研究进展[J].河海大学学报(自然科学版),2009,37(1):1-6. |
56 | Austin A T, Yahdjian L, Stark J M,et al.Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J].Oecologia,2004,141(2):221-235. |
57 | Cantarel A A M, Bloor J M G, Pommier T,et al.Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem[J].Global Change Biology,2012,18(8):2520-2531. |
58 | Khalil K, Renault P, Mary B.Effects of transient anaerobic conditions in the presence of acetylene on subsequent aerobic respiration and N2O emission by soil aggregates[J].Soil Biology & Biochemistry,2005,37(7):1333-1342. |
59 | Wang B, Brewer P E, Shugart H H,et al.Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases:a concept[J].Global Change Biology,2019,25(2):373-385. |
60 | Sey B K, Manceur A M, Whalen J K,et al.Small-scale heterogeneity in carbon dioxide,nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil[J].Soil Biology & Biochemistry,2008,40(9):2468-2473. |
61 | Zaady E, Groffman P M, Standing D,et al.High N2O emissions in dry ecosystems[J].European Journal of Soil Biology,2013,59:1-7. |
62 | Reay D S, Davidson E A, Smith K A,et al.Global agriculture and nitrous oxide emissions[J].Nature Climate Change,2012,2(6):410-416. |
63 | Kuang W, Gao X, Tenuta M,et al.A global meta-analysis of nitrous oxide emission from drip irrigated cropping system[J].Global Change Biology,2021,27(14):1-13. |
64 | Gallarotti N, Barthel M, Verhoeven E,et al.In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis[J].ISME Journal,2021,15(11):3357-3374. |
65 | Zhang H, Deng Q, Schadt C W,et al.Precipitation and nitrogen application stimulation soil nitrous oxide emission[J].Nutrient Cycling in Agroecosystems,2021,120(7828):363-378. |
66 | Gao J Q, Duan M Y, Zhang X Y,et al.Effects of frequency and intensity of drying-rewetting cycles on Hydrocotyle vulgaris growth and greenhouse gas emissions from wetland microcosms[J].Catena,2018,164(1):44-49. |
67 | Chen J, Xiao G L, Kuzyakov Y K,et al.Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest[J].Biogeosciences,2017,14(9):2513-2525. |
68 | Li J, Jin Y Q, Liu Y T,et al.Effects of precipitation exclusion on N2O emissions in a savanna ecosystem in SW China[J].Atmospheric Environment,2018,187:1-8. |
69 | Chen Y L, Kou D, Li F,et al.Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions[J].Plant and Soil,2019,434(1/2):453-466. |
70 | Yang Y, Li T, Wang Y Q,et al.Negative effects of multiple global change factors on soil microbial diversity[J].Soil Biology & Biochemistry,2021,156:108229. |
71 | Gao D C, Bai E, Li M H,et al.Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles:a meta-analysis[J].Soil Biology & Biochemistry,2020,148:107896. |
72 | Beare M H, Gregorich E G, St-Georges P.Compaction effects on CO2 and N2O production during drying and rewetting of soil[J].Soil Biology & Biochemistry,2009,41(3):611-621. |
73 | Fierer N, Schimel J P.Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J].Soil Biology & Biochemistry,2002,34(6):777-787. |
74 | Braker G, R.Diversity Conrad,structure, and size of N 2 O-producing microbial communities in soils:What matters for their functioning?[J].Advances in Applied Microbiology,2011,75:33-70. |
75 | Verstraete W, Focht D D.Biochemical Ecology of Nitrification and Denitrification[M].Boston,MA,USA:Springer US,1977:135-214. |
76 | Smith K A.The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils[J].Global Change Biology,1997,3(4):327-338. |
77 | Godde M, Conrad R.Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils[J].Biology and Fertility of Soils,1999,30:33-40. |
78 | Avrahami S, Bohannan B J M.N2O emission rates in a California meadow soil are influenced by fertilizer level,soil moisture and the community structure of ammonia-oxidizing bacteria[J].Global Change Biology,2009,15(3):643-655. |
79 | Braker G, Schwarz J, Conrad R.Influence of temperature on the composition and activity of denitrifying soil communities[J].FEMS Microbiology Ecology,2010,73(1):134-148. |
80 | Cui P Y, Fan F L, Yin C,et al.Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes[J].Soil Biology & Biochemistry,2016,93:131-141. |
81 | Hu H W, Chen D, He J Z.Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates[J].FEMS Microbiology Reviews,2015,39(5):729-749. |
82 | Horz H P, Barbrook A, Field C B,et al.Ammonia-oxidizing bacteria respond to multifactorial global change[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(42):15136-15141. |
83 | Yin C, Fan F L, Song A L,et al.The response patterns of community traits of N2O emission-related functional guilds to temperature across different arable soils under inorganic fertilization[J].Soil Biology & Biochemistry,2017,108:65-77. |
84 | Billings S A, Tiemann L K.Warming-induced enhancement of soil N2O efflux linked to distinct response times of genes driving N2O production and consumption[J].Biogeochemistry,2014,119(1/3):371-386. |
85 | Dobbie K E, Smith K A.The effects of temperature,water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol[J].European Journal of Soil Science,2001,52(4):667-673. |
86 | 方晶晶,马传明,刘存富.反硝化细菌研究进展[J].环境科学与技术,2010,33():206-210. |
87 | 丁炜,朱亮,徐京.好氧反硝化菌及其在生物处理与修复中的应用研究进展[J].应用与环境生物学报,2011,17(6):923-929. |
88 | 张耀全,马欣,罗珠珠,等.苜蓿种植年限对土壤硝化潜势和氨氧化微生物丰度的影响[J].干旱地区农业研究,2020,38(5):39-44. |
89 | 申颜,孙建平,罗玉坤,等.短期放牧对半干旱草地生态系统CO2和N2O排放的影响[J].环境科学,2018,39(11):5237-5245. |
90 | Tang Y Q, Yu G R, Zhang X Y,et al.Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils[J].Science of the Total Environment,2019,647:653-662. |
91 | Li S Q, Song L N, Gao X,et al.Microbial abundances predict methane and nitrous oxide fluxes from a windrow composting system[J].Frontiers in Microbiology,2017,8:1-15. |
92 | Zumft W G.Cell biology and molecular basis of denitrification[J].Microbiology and Molecular Biology Reviews,1997,61(4):533-616. |
93 | Zhong L, Zhou X Q, Wang Y F,et al.Mixed grazing and clipping is beneficial to ecosystem recovery but may increase potential N2O emissions in a semi-arid grassland[J].Soil Biology & Biochemistry,2017,114:42-51. |
94 | Avrahami S, Liesack W, Conrad R.Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers[J].Environmental Microbiology,2003,5(8):691-705. |
95 | Tourna M, Freitag T E, Nicol G W,et al.Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J].Environmental Microbiology,2008,10(5):1357-1364. |
96 | Szukics U, Abell G C J, Hodl V,et al.Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J].FEMS Microbiology Ecology,2010,72(3):395-406. |
97 | Hu H W, Macdonald C A, Trivedi P,et al.Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems[J].Soil Biology & Biochemistry,2016,92:1-15. |
98 | Jung M Y, Well R, Min D,et al.Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils[J].ISME Journal,2014,8(5):1115-1125. |
99 | Thomas A R C, Bond A J, Hiscock K M.A multi-criteria based review of models that predict environmental impacts of land use-change for perennial energy crops on water,carbon and nitrogen cycling[J].Global Change Biology Bioenergy,2013,5(3):227-242. |
100 | Li C S.Modeling trace gas emissions from agricultural ecosystems[J].Nutrient Cycling in Agroecosystems,2000,58(1/3):259-276. |
101 | Li Y, White R, Chen D L,et al.A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain[J].Ecological Modelling,2007,203(3/4):395-423. |
102 | 李东丽.基于DNDC模型的干旱区水稻田温室气体排放实验研究:以乌鲁木齐市米东区为例[D].乌鲁木齐:新疆大学,2021. |
[1] | 杨宇哲, 岳大鹏, 赵景波, 刘怡婷, 李嘉宁, 杨天宇. 毛乌素沙地东南缘L3 、S3 黄土-古土壤色度特征及古气候意义[J]. 中国沙漠, 2023, 43(1): 176-186. |
[2] | 和海秀, 付爱红, 王川. 塔城地区西北部低山草甸植被指数变化及其驱动力[J]. 中国沙漠, 2023, 43(1): 187-196. |
[3] | 秦豪君, 杨晓军, 马莉, 王一丞, 傅朝, 张君霞, 陆正奇. 2000—2020年中国西北地区区域性沙尘暴特征及成因[J]. 中国沙漠, 2022, 42(6): 53-64. |
[4] | 许文文, 赵燕翘, 王楠, 赵洋. 人工生物土壤结皮对草本植物群落组成与多样性的影响[J]. 中国沙漠, 2022, 42(5): 204-211. |
[5] | 柳欣滢, 金明, 杨帆, 马亚鹏, 刘慧, 孙小云, 夏敦胜. 毛乌素沙地东缘中全新世以来环境变化及其对文明演化的影响初探[J]. 中国沙漠, 2022, 42(5): 92-100. |
[6] | 朱士华, 方霞, 杭鑫, 谢小萍, 孙良宵, 曹良中. 中亚草地植被指数( NDVI )对气候变化及人类活动的响应[J]. 中国沙漠, 2022, 42(4): 229-241. |
[7] | 陈雪萍, 赵学勇, 王瑞雄, 宁志英, 卢建男, 赵思腾. 气候变化与土地利用/覆被变化对中国北方农牧交错带水资源影响研究进展[J]. 中国沙漠, 2022, 42(3): 170-177. |
[8] | 宫毓来, 马绍休, 刘伟琦. 机器学习与统计模型在石羊河流域气候降尺度研究中的适用性对比[J]. 中国沙漠, 2022, 42(1): 196-210. |
[9] | 张志山, 杨贵森, 吕星宇, 虎瑞, 黄磊. 荒漠生态系统C、N、P生态化学计量研究进展[J]. 中国沙漠, 2022, 42(1): 48-56. |
[10] | 柳本立, 彭婉月, 刘树林, 杨婷. 2021年3月中旬东亚中部沙尘天气地面起尘量及源区贡献率估算[J]. 中国沙漠, 2022, 42(1): 79-86. |
[11] | 雷燕慧, 丁国栋, 李梓萌, 迟文峰, 高广磊, 赵媛媛. 京津风沙源治理工程区土地利用/覆盖变化及生态系统服务价值响应[J]. 中国沙漠, 2021, 41(6): 29-40. |
[12] | 马晓慧, 庞奖励, 刘小槺, 丁丹, 岳晓晓, 贾飞飞. 瓦窑沟剖面记录的早中全新世毛乌素沙地东南缘气候变化[J]. 中国沙漠, 2021, 41(5): 71-80. |
[13] | 张小梅, 靳鹤龄, 刘冰. 末次盛冰期以来库布齐沙漠环境变化[J]. 中国沙漠, 2021, 41(5): 81-93. |
[14] | 马永桃, 任孝宗, 胡慧芳, 刘敏, 孟琪. 基于地理探测器的浑善达克沙地植被变化定量归因[J]. 中国沙漠, 2021, 41(4): 195-204. |
[15] | 韩兰英, 张强, 马鹏里, 王有恒, 黄涛, 贾建英, 王鑫, 王小巍, 刘卫平, 李丹华, 卢国阳, 黄鹏程, 白冰. 气候变暖背景下黄河流域干旱灾害风险空间特征[J]. 中国沙漠, 2021, 41(4): 225-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn