Please wait a minute...
img

官方微信

高级检索
中国沙漠  2019, Vol. 39 Issue (3): 17-24    DOI: 10.7522/j.issn.1000-694X.2018.00057
    
荒漠藓类结皮边缘效应下土壤肥力的灰色关联度分析
李茜倩1,2, 张元明1
1. 中国科学院新疆生态与地理研究所 干旱区生物地理与生物资源重点实验室, 新疆 乌鲁木齐 830011;
2. 中国科学院大学, 北京 100049
Grey Relation Analysis on Soil Fertility as Influenced by Edge Effects of Moss Crust Patch in a Temperate Desert
Li Xiqian1,2, Zhang Yuanming1
1. Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3011 KB)  
摘要: 干旱半干旱地区土壤资源呈现高度异质性,植被分布斑块化成为该生态系统的普遍现象。藓类结皮是荒漠地表生物土壤结皮的主要类型,自然状态下藓类结皮通常呈现出典型的斑块状分布特征。应用灰色系统理论,以新疆北部古尔班通古特沙漠藓类结皮层土壤为研究对象,将藓类结皮斑块从中心至边缘划分3个圈层,通过对土壤的理化性质、酶活性、微生物生物量及微生物群落碳源利用等16项指标进行分析,利用灰色关联度分析法定量分析了藓类结皮斑块3个圈层的土壤肥力,并进行综合排序。结果表明:(1)藓类结皮斑块边缘圈层的土壤有机质、全氮、全钾、脲酶、过氧化氢酶、微生物生物量碳氮、平均吸光值(AWCD)均显著低于内部两个圈层,全磷、速效氮、速效磷、速效钾含量及pH值、碱性磷酸酶、蔗糖酶、β-葡萄糖苷酶活性均不受边缘效应的影响,在3个圈层无显著差异。同时,土壤各项指标在斑块内部两个圈层均无显著差异。(2)藓类结皮斑块3个圈层土壤肥力的关联度值依次为中心圈层(0.65) > 中间圈层(0.59) > 边缘圈层(0.47),藓类结皮斑块结皮层的土壤肥力从中心至边缘逐渐降低。藓类结皮斑块状分布显著影响土壤肥力,导致土壤肥力空间异质性程度增大,从而可能影响荒漠植物群落,尤其是草本植物群落的空间分布格局。
关键词: 藓类结皮斑块边缘效应土壤肥力灰色关联度分析    
Abstract: Patchiness is regarded as a common phenomenon of arid and semi-arid region due to highly heterogeneity. Moss crust, one of the main types of biological soil crusts in desert ecosystems, mainly occurred in the form of patches with different sizes. In order to determine the soil fertility of moss crust patch under the edge effect in Gurbantonggut Desert, soil physical and chemical properties, microbial properties and enzymatic activities were chosen as assessment indicators. Soil samples were collected from three cycles of moss crust patches, center, middle and edge cycles respectively. The data of soil fertility was analyzed quantitatively by grey relational analysis,and ranked by correlation degrees comprehensively. The results showed that: (1) SOM, TN, TK, UE, CAT, SMBC, SMBN and AWCD were significantly influenced by the edge effect, with higher contents in center and middle circle and less in the edge. However, there were no significant difference with the contents of TP, AN, AP, AK, pH, ALP, SC, β-GC among there circles. At the same time, all the soil properties showed no significant difference in the center and the middle circle. (2) The order of soil fertility in three circle with moss crust patch under the edge effect was center circle (0.65) > middle circle (0.59) > edge circle (0.47). We conclude that the soil fertility of moss crust patches present a trend of decrease from the center to edge. It was also proved that the existence of edge effects of moss crust patches could significantly influence soil fertility, which could consequently influence the spatial distribution pattern of vascular plant community, especially for those herbaceous communities.
Key words: moss crust    patch    edge effect    soil fertility    grey relation analysis
收稿日期: 2018-02-17 出版日期: 2019-06-10
:  S158.3  
基金资助: 国家自然科学基金项目(41571256)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李茜倩
张元明

引用本文:

李茜倩, 张元明. 荒漠藓类结皮边缘效应下土壤肥力的灰色关联度分析[J]. 中国沙漠, 2019, 39(3): 17-24.

Li Xiqian, Zhang Yuanming. Grey Relation Analysis on Soil Fertility as Influenced by Edge Effects of Moss Crust Patch in a Temperate Desert. Journal of Desert Research, 2019, 39(3): 17-24.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2018.00057        http://www.desert.ac.cn/CN/Y2019/V39/I3/17

[1] 李小雁.干旱地区土壤-植被-水文耦合\,响应与适应机制[J].中国科学(地球科学),2011,41(12):1721-1730.
[2] Li X,He M,Stefan Z,et al.Micro-geomorphology determines community structure of biological soil crusts at small scales[J].Earth Surface Processes & Landforms,2010,35(8):932-940.
[3] Schlesinger W H,Raikes J A,Hartley A E,et al.On the spatial pattern of soil nutrients in desert ecosystems[J].Ecology,1996,72(2):364-374.
[4] Brotherson J D,Rushforth S R.Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument,Arizona[J].Great Basin Naturalist,1983,43(1):73-78.
[5] 徐杰,白学良,田桂泉,等.干旱半干旱地区生物结皮层藓类植物氨基酸和营养物质组成特征及适应性分析[J].生态学报,2005,25(6):1247-1255.
[6] Cornelissen J H,Lang S I,Soudzilovskaia N A,et al.Comparative cryptogam ecology:a review of bryophyte and lichen traits that drive biogeochemistry[J].Annals of Botany,2007,99(5):987-1001.
[7] West N E.Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J].Advances in Ecological Research,1990,20:179-223.
[8] Belnap J,Gardner J S.Soil microstructure in soils of the colorado plateau:the role of the cyanobacterium microcoleus vaginatus[J].Great Basin Naturalist,1993,53(1):40-47.
[9] 张元明,陈晋,王雪芹,等.古尔班通古特沙漠生物结皮的分布特征[J].地理学报,2005,28(1):53-60.
[10] 张卫国,黄文冰,杨振宇.草地微斑块与草地退化关系的研究[J].草业学报,2003,12(3):44-50.
[11] Levin S A.The problem of pattern and scale in ecology[J].Ecology,1992,73(6):1943-1967.
[12] 叶万辉.物种多样性与植物群落的维持机制[J].生物多样性,2000,8(1):17-24.
[13] 蔡运龙.当代自然地理学态势[J].地理研究,2010,29(1):1-12.
[14] Malmivaaralämsä M,Hamberg L,Haapamäki E,et al.Edge effects and trampling in boreal urban forest fragments-impacts on the soil microbial community[J].Soil Biology Biochemistry,2008,40(7):1612-1621.
[15] Chen J Q,Franklin J F,Spies T A.Contrasting microclimates among clear-cut,edge,and interior of old-growth douglas-fir forest[J].Agricultural & Forest Meteorology,1993,63(3):219-337.
[16] Daviescolley R J,Payne G W,Elswijk M V.Microclimate gradients across a forest edge[J].New Zealand Journal of Ecology,2000,24(2):111-121.
[17] 熊小刚,韩兴国.内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳\,氮资源空间异质性分布[J].生态学报,2005,25(7):1678-1683.
[18] Bowker M A,Maestre F T.Inferring local competition intensity from patch size distributions:a test using biological soil crusts[J].Oikos,2012,121(11):1914-1922.
[19] 张元明,杨维康,王雪芹,等.生物结皮影响下的土壤有机质分异特征[J].生态学报,2005,25(12):3420-3425.
[20] 吉雪花,张元明,陶冶,等.藓类结皮斑块面积与环境因子的关系[J].中国沙漠,2013,33(6):1803-1809.
[21] 关松荫.土壤酶及其研究方法[M].北京:中国农业科技出版社,1986:243-323.
[22] Nunan N,Mogan M A,Herlihy M.Ultraviolet absorbance(280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass[J].Soil Biology and Biochemistry,1998,30(12):1599-1603.
[23] 周晓兵,张元明,陶冶,等.古尔班通古特沙漠土壤酶活性和微生物量氮对模拟氮沉降的响应[J].生态学报,2011,31(12):3340-3349.
[24] 邓聚龙.灰色系统基本方法汉英对照[M].武汉:华中科技大学出版社,2005:73-105.
[25] 孙玉刚.灰色关联度分析及其应用研究[D].南京:南京航空航天大学,2007.
[26] Bestelmeyer B T,Ward J P,Havstad K M.Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone[J].Ecology,2006,87(4):963-973.
[27] 吉雪花,张元明,周小兵,等.不同尺度苔藓结皮土壤性状的空间分布特征[J].生态学报,2014,34(14):4006-4016.
[28] Chen J Q,Franklin J F,Spies T A.Contrasting microclimates among clear-cut,edge,and interior of old-growth douglas-fir forest[J].Agricultural & Forest Meteorology,1993,63(2):219-237.
[29] Young A,Mitchell N.Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand[J].Biological Conservation,1994,67(1):63-72.
[30] Chen J Q,Franklin J F,Spies T A.Growing-season microclimatic gradients from clear-cut edges into old-growth douglas-fir forests[J].Ecological Applications,1995,5(1):74-86.
[31] Schröder T,Fleig F D.Spatial patterns and edge effects on soil organic matter and nutrients in a forest fragment of southern Brazil[J].Soil Research,2017,55(7):439-447.
[32] Malmivaaralämsä M,Hamberg L,Haapamäki E,et al.Edge effects and trampling in boreal urban forest fragments-impacts on the soil microbial community[J].Soil Biology Biochemistry,2008,40(7):1612-1621.
[33] Harper K A,Macdonald S E,Burton P J,et al.Edge influence on forest structure and composition in fragmented landscapes[J].Conservation Biology,2005,19(3):768-782.
[34] Badiane N N Y,Chotte J L,Pate E,et al.Use of soil enzyme activities to monitor soil quality in natural and improved fal lows in semi-arid tropical regions[J].Applied Soil Ecology,2001,18(3):229-238.
[35] 陈恩凤.土壤酶与土壤肥力研究[M].北京:科学出版社,1979:54-61.
[36] 吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:54-78.
[1] 王新源, 刘世增, 陈翔舜, 王小军, 王彬, 万翔. 河西走廊绿洲面积动态及其驱动因素[J]. 中国沙漠, 2019, 39(4): 212-219.
[2] 苏永中, 杨荣, 刘婷娜. 施肥对新垦绿洲风沙土肥力及碳积累的影响[J]. 中国沙漠, 2019, 39(3): 1-6.
[3] 刘江, 徐先英, 张荣娟, 丁爱强, 付贵全, 赵鹏. 人工梭梭林大沙鼠(Rhombomys opimus)土丘斑块与鼠洞塌陷斑块破碎度及点格局[J]. 中国沙漠, 2018, 38(3): 610-618.
[4] 杨怀德, 冯起, 郭小燕. 1999-2013年民勤绿洲地下水埋深年际变化动态及影响因素[J]. 中国沙漠, 2017, 37(3): 562-570.
[5] 宋彦涛, 乌云娜, 张靖, 霍光伟, 张凤杰. 放牧强度对克氏针茅(Stipa krylovii)草原植被景观格局的影响[J]. 中国沙漠, 2016, 36(3): 674-680.
[6] 吉雪花1,2, 张元明2, 陶 冶2, 周小兵2, 张 静2. 藓类结皮斑块面积与环境因子的关系[J]. 中国沙漠, 2013, 33(6): 1803-1809.
[7] 常学礼, 韩艳, 孙小艳, 张宁. 干旱区绿洲扩展过程中的景观变化分析[J]. 中国沙漠, 2012, 32(3): 857-862.
[8] 贾 艳, 白学良, 单飞彪, 白少伟, 詹洪瑞. 藓类结皮层人工培养试验和维持机制研究[J]. 中国沙漠, 2012, 32(1): 54-59.
[9] 刘文杰, 苏永中, 陈生云, 杨 荣, 王雪峰, 范桂萍. 临泽绿洲农田土壤肥力质量时空变化特征[J]. 中国沙漠, 2012, 32(1): 132-139.
[10] 李小军;汪 君;高永平. 荒漠化草原植被斑块分布对地表径流、侵蚀及养分流失的影响[J]. 中国沙漠, 2011, 31(5): 1112-1118.
[11] 禹朴家;;徐海量*;乔 木;安红燕;刘世薇;. 玛纳斯河流域土壤斑块标度频度分形关系初探[J]. 中国沙漠, 2011, 31(3): 729-734.
[12] 吴 楠;张元明*. 古尔班通古特沙漠生物土壤结皮影响下的土壤酶分布特征[J]. 中国沙漠, 2010, 30(5): 1128-1136.
[13] 郑云普;;赵建成*;张丙昌;张元明. 荒漠藓类结皮层中齿肋赤藓形态结构适应性及其原丝体发育特征[J]. 中国沙漠, 2009, 29(5): 878-884.
[14] 李光棣;李锋瑞;施坰林. 保护性农业的研究现状、进展与展望[J]. 中国沙漠, 2008, 28(6): 1086-1094.
[15] 赫晓慧;常庆瑞;温仲明*;焦 峰;李 锐 . 农牧交错带不同人工植被下荒漠化土壤肥力的变化[J]. 中国沙漠, 2006, 26(6): 915-919.