Please wait a minute...
img

官方微信

高级检索
中国沙漠  2019, Vol. 39 Issue (3): 126-135    DOI: 10.7522/j.issn.1000-694X.2018.00116
    
基于历史帕默尔干旱指数(PDSI)数据集重建的长江源区过去706 a径流量
王姝1, 李金建1, 秦宁生2
1. 成都信息工程大学 大气科学学院, 四川 成都 610225;
2. 中国气象局成都高原气象研究所, 四川 成都 610072
Runoff Reconstruction for the Source of the Yangtze River over the Past 706 Years Based on Historical PDSI Dataset
Wang Shu1, Li Jinjian1, Qin Ningsheng2
1. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China;
2. Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China
 全文: PDF(7410 KB)  
摘要: 利用亚洲季风区帕默尔干旱指数(PDSI)重建格点数据集(Monsoon Asia Drought Atlas,MADA)中长江源及附近地区的5个格点序列,通过PDSI与长江源区径流量的相关分析,发现5个格点的第一主成分(PC1)与长江源区夏季(6—8月)平均径流量的相关性最大(r=0.609,N=50,α<0.001)。由此,重建了1300—2005年长江源区夏季径流量变化,并运用独立验证法对重建结果的可靠性进行了检验,运用小波分析方法对重建径流序列进行周期分析。结果表明:近706 a,长江源区经历了显著的丰水期13个、枯水期15个,其中持续时间最长的丰水期为1513—1573年,持续时间最长的枯水期为1389—1414年;重建序列主要存在2~6、10~13、20~26、30~50、50~70 a的显著周期振荡。重建序列与海表温度的相关性表明,长江源区径流变化可能与厄尔尼诺-南方涛动(ENSO)、大西洋年际振荡(AMO)、北大西洋涛动(NAO)、太平洋年代际振荡(PDO)等有关。
关键词: 青藏高原长江源区帕默尔干旱指数径流量重建    
Abstract: Five grid sequences near the source of the Yangtze River were selected from the reconstructed PDSI gridded datasets in the Asian monsoon region(Monsoon Asia Drought Atlas,MADA). Based on the correlation analysis between PDSI and the runoff in the source region of the Yangtze River, it was found that the first principal component (PC1) of the five grids has the largest correlation (r=0.609,N=50, α<0.001) with the average runoff in the summer (June-August). A record of summer runoff at the source of Yangtze River from 1300-2005 was then reconstructed, and the reliability of the reconstruction equation was tested by the independent verification method. As indicated by the reconstruction, 13 periods of high flow and 15 periods of low flow occurred during the previous 706 years. The longest periods of high flow occurred during 1513-1573, while the longest period of low flow occurred during 1389-1414. Wavelet analysis demonstrated that the reconstructed sequence mainly has significant periodic oscillations of 2-6 years, 10-13 years, 20-26 years, 30-50 years and 50-70 years. Correlation analysis between reconstruction and global sea surface temperature indicated that the runoff variation might be related to ENSO, AMO, NAO, PDO and so on.
Key words: Qinghai-Tibet Plateau    the source of Yangtze River    Palmer Drought Severity Index    runoff reconstruction
收稿日期: 2018-08-09 出版日期: 2019-06-10
ZTFLH:  P333  
基金资助: 国家自然科学基金项目(41772173,41405077,41375116)
通讯作者: 秦宁生(E-mail:qinns0515@163.com)     E-mail: qinns0515@163.com
作者简介: 王姝(1994-),女,四川冕宁人,硕士研究生,主要从事气候变化方面的研究。E-mail:574385529@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王姝
李金建
秦宁生

引用本文:

王姝, 李金建, 秦宁生. 基于历史帕默尔干旱指数(PDSI)数据集重建的长江源区过去706 a径流量[J]. 中国沙漠, 2019, 39(3): 126-135.

Wang Shu, Li Jinjian, Qin Ningsheng. Runoff Reconstruction for the Source of the Yangtze River over the Past 706 Years Based on Historical PDSI Dataset. Journal of Desert Research, 2019, 39(3): 126-135.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2018.00116        http://www.desert.ac.cn/CN/Y2019/V39/I3/126

[1] 李林,朱西德,周陆生,等.三江源地区气候变化及其对生态环境的影响[J].气象,2004,30(8):18-22.
[2] 邵雪梅.树轮年代学的若干进展[J].第四纪研究,1997,17(3):265-271.
[3] Fritts H C.Tree rings and climate[J].Scientific Monthly,1925,21(1):95-99.
[4] Hughes M K,Funkhouser G.Extremes of moisture availability reconstructed from tree rings for recent millennia in the great basin of western north America[J].Lecture Notes in Earth Sciences,1998,74:99-107.
[5] Dean J S.Dendrochronology and the study of human behavior[M]//Dean J S,Meko D M,Swetnam T W.Tree Rings,Environment,and Humanity.Tucson,USA:University of Arizona Press,1996:461-469.
[6] Cook E R,Kairiukstis L A.Methods of dendrochronology:applications in the environmental sciences[J].Arctic & Alpine Research,1990,23(1):120.
[7] 邵雪梅,王树芝,徐岩,等.柴达木盆地东北部3500年树轮定年年表的初步建立[J].第四纪研究,2007,27(4):477-485.
[8] Woodhouse C A,Overpeck J T.2000 years of drought variability in the central United States[J].Bulletin of the American Meteorological Society,1998,79(12):2693-2714.
[9] Case R A,Macdonald G M.Tree ring reconstructions of streamflow for three canadian prairie rivers[J].Jawra Journal of the American Water Resources Association,2003,39(3):703-716.
[10] Jain S,Eischeid J K.What a difference a century makes:understanding the changing hydrologic regime and storage requirements in the Upper Colorado River basin[J].Geophysical Research Letters,2012,35(16):428-451.
[11] Gou X H,Deng Y,Chen F H,et al.Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years[J].Chinese Science Bulletin,2010,55(36):4179-4186.
[12] 康兴成,程国栋.利用树轮资料重建黑河近千年来出山口径流量[J].中国科学(D辑),2002,32(8):675-685.
[13] 秦宁生,靳立亚,时兴合,等.利用树轮资料重建通天河流域518年径流量[J].地理学报,2004,59(4):550-556.
[14] Xiao D,Shao X,Qin N,et al.Tree-ring-based reconstruction of streamflow for the Zaqu River in the Lancang River source region,China,over the past 419 years[J].International Journal of Biometeorology,2016,61(7):1-17.
[15] George S S.Tree rings as paleoflood and paleostage indicators[M]//Stoffel M.Tree Rings and Natural Hazards:A State of Art.Berlin,Germany:Springer,2010:233-239.
[16] Pederson N,Bell A R,Cook E R,et al.Is an epic pluvial masking the water insecurity of the Greater New York City Region?[J].Journal of Climate,2013,26(4):1339-1354.
[17] Devineni N,Lall U,Pederson N,et al.A tree-ring-based reconstruction of Delaware River Basin streamflow using hierarchical Bayesian regression[J].Journal of Climate,2011,26(12):4357-4374.
[18] 俞胜宾.基于修订的自适应Palmer指数的中国干旱变化规律的研究[D].北京:中国气象科学研究院,2007.
[19] Li J,Shao X,Qin N,et al.Runoff variations at the source of the Yangtze River over the past 639 years based on tree-ring data[J].Climate Research,2018,75:134-142.
[20] Ho M,Lall U,Cook E R.Can a paleodrought record be used to reconstruct streamflow?a case study for the Missouri River Basin[J].Water Resources Research,2016,52(7):5195-5212.
[21] Cook E R,Anchukaitis K J,Buckley B M,et al.Asian monsoon failure and megadrought during the last millennium[J].Science,2010,328(5977):486-489.
[22] 吴豪,虞孝感.近四十年来长江源区河流水沙量的变化[J].长江流域资源与环境,2002,11(2):175-178.
[23] 王根绪,李元寿,王一博,等.长江源区高寒生态与气候变化对河流径流过程的影响分析[J].冰川冻土,2007,29(2):159-168.
[24] 曹建廷,秦大河,罗勇,等.长江源区1956-2000年径流量变化分析[J].水科学进展,2007,18(1):29-33.
[25] 吴祥定.树木年轮与气候变化[M].北京:气象出版社,1990:161-234.
[26] Cook E R,Meko D M,Stahle D W,et al.Drought reconstruction for the continental United States[J].Journal of Climate,1999,12:1145-1162.
[27] 朱海峰,郑永宏,邵雪梅,等.树木年轮记录的青海乌兰地区近千年温度变化[J].科学通报,2008,53:1835-1841.
[28] 秦宁生,邵雪梅,靳立亚,等.青海南部高原圆柏年轮指示的近500年来气候变化[J].科学通报,2003,48(19):2068-2072.
[29] Fang K,Frank D,Gou X,et al.Precipitation over the past four centuries in the Dieshan Mountains as inferred from tree rings:an introduction to an HHT-based method[J].Global & Planetary Change,2013,107(4):109-118.
[30] 刘晶晶,Nina Datsenko.树轮记录的青藏高原西南部过去644年的降水变化[J].第四纪研究,2015,35(5):1082-1092.
[31] He M,Yang B,Bräuning A,et al.Tree-ring-derived millennial precipitation record for the southern Tibetan Plateau and its possible driving mechanism[J].Holocene,2013,23(1):36-45.
[32] Liu J,Yang B,Huang K,et al.Annual regional precipitation variations from a 700 year tree ring record in south Tibet,western China[J].Climate Research,2012,53(1):25-41.
[33] Lau K,Weng H.Climate signal detection using wavelet transform:how to make a time series sing[J].Bulletin of the American Meteorological Society,1995,76(12):2391-2402.
[34] Allan R J,Lindesay J,Parker D E.Niño,southern oscillation & climatic variability[M].Clayton,Australia:CSIRO Publishing,1996.
[35] Nayar S R P,Radhika V N,Revathy K,et al.Wavelet analysis of solar,solar wind and geomagnetic parameters[J].Solar Physics,2002,208(2):359-373.
[36] Hale G E.The law of sun-spot polarity[J].Proceedings of the National Academy of Sciences of the United States of America,1924,10(1):53-55.
[37] Silverman S M.Secular variation of the aurora for the past 500 years[J].Reviews of Geophysics,1992,30(4):333-351.
[38] Svalgaard L,Cliver E W,Kamide Y.Sunspot cycle 24:smallest cycle in 100 years?[J].Geophysical Research Letters,2005,32(1):426-432.
[39] Gray S T,Graumlich L J,Betancourt J L,et al.A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D.[J].Geophysical Research Letters,2004,31(12):261-268.
[40] Chen Z J,He X Y,Chen W,et al.Solar activity,global surface air temperature anomaly and Pacific Decadal Oscillation signals observed in urban outskirts tree ring records from Shenyang,China[J].Advances in Space Research,2006,38(10):2272-2284.
[41] Biondiv F,Gershunov A,Cayan D R.North Pacific decadal climate variability since 1661[J].Journal of Climate,2001,14:5-10.
[42] Tourre Y M,Rajagopalan B,Kushnir Y,et al.Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20th century[J].Geophysical Research Letters,2001,28(10):2069-2072.
[43] Li C Y,He J H,Zhu J H.A review of decadal/interdecadal climate variation studies in China[J].Advances in Atmospheric Sciences,2004,21(3):425-436.
[44] Wang X,Brown P M,Zhang Y,et al.Imprint of the Atlantic multidecadal oscillation on tree-ring widths in northeastern Asia since 1568[J].Plos One,2011,6(7):e22740.
[45] 郭其蕴,蔡静宁,邵雪梅,等.1873-2000年东亚夏季风变化的研究[J].大气科学,2004,28(2):206-215.
[46] 丁一汇.亚洲季风[M].北京:气象出版社,1994.
[47] 梁宏,刘晶淼,章建成,等.青藏高原大气总水汽量的反演研究[J].高原气象,2006,25(6):1055-1063.
[48] Sano M,Buckley B M,Sweda T.Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokieniahodginsii:eighteenth century mega-drought and tropical Pacific influence[J].Climate Dynamics,2009,33(2/3):331-340.
[49] Singhrattna N,Rajagopalan B,Krishna Kumar K,et al.Interannual and interdecadal variability of thailand summer monsoon season[J].Journal of Climate,2005,18(11):1697-1708.
[50] Wang B,Wu R,Fu X.Pacific-East Asian Teleconnection:how does ENSO affect East Asian climate?[J].Journal of Climate,2000,13(9):1517-1536.
[51] 周连童,黄荣辉.关于我国夏季气候年代际变化特征及其可能成因的研究[J].气候与环境研究,2003,8(3):274-290.
[52] Feng S,Hu Q.How the north atlantic multidecadal oscillation may have influenced the Indian summer monsoon during the past two millennia[J].Geophysical Research Letters,2008,35(1):548-562.
[53] Li S,Perlwitz J,Quan X,et al.Modelling the influence of north Atlantic multidecadal warmth on the Indian summer rainfall[J].Geophysical Research Letters,2008,35(5):L05804.
[54] 武炳义,黄荣辉.冬季北大西洋涛动极端异常变化与东亚冬季风[J].大气科学,1999,23(6):641-651.
[1] 蒋盈沙, 高艳红, 潘永洁, 李霞. 青藏高原及其周边区域沙尘天气的时空分布特征[J]. 中国沙漠, 2019, 39(4): 83-91.
[2] 姚慧茹, 李栋梁. 青藏高原风季大风集中期、集中度及环流特征[J]. 中国沙漠, 2019, 39(2): 122-133.
[3] 李庆, 张春来, 周娜, 沈亚萍, 伍永秋, 邹学勇, 李姣, 贾文茹, 王雪松. 青藏高原沙漠化土地空间分布及区划[J]. 中国沙漠, 2018, 38(4): 690-700.
[4] 黄小梅, 肖丁木, 秦宁生. 大果圆柏(Juniperus tibetica)树轮记录的1606-2012年长江源区4-6月帕尔默干旱指数变化[J]. 中国沙漠, 2017, 37(4): 784-792.
[5] 孙岩, 王一博, 孙哲, 刘国华, 高泽永. 有机质对青藏高原多年冻土活动层土壤持水性能的影响[J]. 中国沙漠, 2017, 37(2): 288-295.
[6] 郑然, 李栋梁. 1971-2011年青藏高原干湿气候区界线的年代际变化[J]. 中国沙漠, 2016, 36(4): 1106-1115.
[7] 陈斌, 李海东, 曹学章, 沈渭寿, 金行. 雅鲁藏布江流域植被格局与NDVI分布的空间响应[J]. 中国沙漠, 2015, 35(1): 120-128.
[8] 俎瑞平, 贺志霖, 宗玉梅, 屈建军, 牛清河. 青藏高原风沙堆积对多年冻土影响研究进展[J]. 中国沙漠, 2014, 34(5): 1208-1214.
[9] 高泽永, 王一博, 文晶, 盛兆海. 长江源多年冻土区热融湖塘的形成对土壤沙化过程的影响[J]. 中国沙漠, 2014, 34(3): 758-764.
[10] 贺敏慧, 杨 保, 秦 春, 刘晶晶, 康淑媛. 青藏高原东北部与南部地区树木径向生长对气候要素的响应——以祁丰和林周树轮为例[J]. 中国沙漠, 2013, 33(4): 1117-1123.
[11] 胡光印1, 董治宝1, 逯军峰1, 尚 燚2, 颜长珍1. 若尔盖盆地沙漠化及其景观格局变化研究[J]. 中国沙漠, 2013, 33(1): 16-23.
[12] 殷代英, 屈建军, 韩庆杰, 李 毅, 安志山, 李建国, 谭立海. 青藏铁路错那湖段风沙活动强度特征分析[J]. 中国沙漠, 2013, 33(1): 9-15.
[13] 刘卫国1,2,3, 王 曼1,2, 丁俊祥1,2, 吕光辉1,2. 帕默尔干旱指数在天山北坡典型绿洲干旱特征分析中的适用性[J]. 中国沙漠, 2013, 33(1): 249-257.
[14] 胡光印, 董治宝, 逯军峰, 颜长珍, 魏振海. 长江源区沙漠化及其景观格局变化研究[J]. 中国沙漠, 2012, 32(2): 314-322.
[15] 刘晶晶;杨 保*. 青藏高原南部南木林地区树木径向生长对气候因子的响应[J]. 中国沙漠, 2011, 31(6): 1527-1534.