中国沙漠 2020, Vol. 40 Issue (5): 25-31 DOI: 10.7522/j.issn.1000-694X.2020.00038 |
|
|
面向低碳转型的甘肃省地区聚类分析 |
董莹1,2( ),华中3,陆志翔1,许宝荣4,邹松兵1,4( ) |
1.中国科学院西北生态环境资源研究院 内陆河流域生态水文重点实验室,甘肃 兰州 730000 2.中国科学院大学,北京 100049 3.中国科学院地理科学与资源研究所,北京 100101 4.兰州大学 资源环境学院,甘肃 兰州 730000 |
|
Cluster analysis of prefecture-level cities in Gansu Province for low carbon transformation |
Ying Dong1,2( ),Zhong Hua3,Zhixiang Lu1,Baorong Xu4,Songbing Zou1,4( ) |
1.Key Laboratory of Eco-Hydrology of Inland River Basin,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China 2.University of Chinese Academy of Sciences,Beijing 100049,China 3.Institute of Geographic Sciencse and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China 4.College of Earth and Environmental Sciences,Lanzhou University,Lanzhou 730000,China |
引用本文:
董莹,华中,陆志翔,许宝荣,邹松兵. 面向低碳转型的甘肃省地区聚类分析[J]. 中国沙漠, 2020, 40(5): 25-31.
Ying Dong,Zhong Hua,Zhixiang Lu,Baorong Xu,Songbing Zou. Cluster analysis of prefecture-level cities in Gansu Province for low carbon transformation. Journal of Desert Research, 2020, 40(5): 25-31.
链接本文:
http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00038
或
http://www.desert.ac.cn/CN/Y2020/V40/I5/25
|
1 |
Tambo J A.Adaptation and resilience to climate change and variability in north-east Ghana[J].International Journal of Disaster Risk Reduction,2016,17:85-94.
|
2 |
Kourgialas N N,Karatzas G P.A flood risk decision making approach for Mediterranean tree crops using GIS:climate change effects and flood-tolerant species[J].Environmental Science and Policy,2016,63:132-142.
|
3 |
奥布力·塔力普,汪慧玲,阿里木江·卡斯木.基于系统聚类分析的西部地区环境污染程度评价[J].冰川冻土,2015,37(1):266-270.
|
4 |
康霞.甘肃省农田生态系统碳收支动态[J].中国沙漠,2018,38(6):1237-1242.
|
5 |
Yu S W,Wei Y M,Fan J L.Exploring the regional characteristics of inter-provincial CO2 emissions in China: an improved fuzzy clustering analysis based on particle swarm optimization[J].Applied Energy,2012(92):552-562.
|
6 |
Ozdemir O,Kaya A.K-medoids and fuzzy C-means algorithms for clustering CO2 emissions oF Turkey and other OECD countries[J].Applied Ecology and Environmental Research,2018,3(16):2513-2526.
|
7 |
张彬,姚娜,刘学敏.基于模糊聚类的中国分省碳排放初步研究[J].中国人口·资源与环境,2011,21(1):53-56.
|
8 |
Zhang S C,Zhao T.Identifying major influencing factors of CO2 emissions in China: Regional disparities analysis based on STIRPAT model from 1996 to 2015[J].Atmospheric Environment,2019,207:136-147.
|
9 |
张乐.城镇化进程对碳排放影响研究:基于区域差异视角[D].徐州:中国矿业大学,2017.
|
10 |
王佳.中国地区碳不平等:测度及影响因素[D].重庆:重庆大学,2012.
|
11 |
黄国华,刘传江,徐正华.长江经济带碳减排潜力与低碳发展策略[J].长江流域资源与环境,2018,27(4):695-704.
|
12 |
郑颖,逯非,刘晶茹,等.我国典型城市化石能源消费CO2排放及其影响因素比较研究[J].生态学报,2020(10):1-13.
|
13 |
黄蕊,王铮,丁冠群,等.基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J].地理研究,2016,35(4):781-789.
|
14 |
李雪梅,张庆.天津市能源消费碳排放影响因素及其情景预测[J].干旱区研究,2019,36(4):997-1004.
|
15 |
郭志玲.甘肃省碳排放峰值预测与应对策略研究[D].兰州:兰州大学,2015.
|
16 |
刘定惠,杨永春.甘肃省碳排放变化的因素分解及实证分析[J].干旱区研究,2012,29(3):510-516.
|
17 |
高振宇,王益.我国能源生产率的地区划分及影响因素分析[J].数量经济技术经济研究,2006(9):46-57.
|
18 |
Xu R,Donald W.Survey of clustering algorithms[J].IEEE Transactions on Neural Networks,2005,16(3):645-678.
|
19 |
安帅,王乃昂,陈会丽,等.基于SOFM网络的巴丹吉林沙漠湖泊聚类及其他地下水补给来源推断[J].中国沙漠,2014,34(2):574-581.
|
20 |
赵哈林,张铜会,常学礼,等.科尔沁沙质放牧草地植被分异规律的聚类分析[J].中国沙漠,1999,19():40-44.
|
21 |
王书剑.中国碳排放驱动因素分析:基于2004—2014年省级面板数据[J].金融经济,2018(8):37-39.
|
22 |
钱力,李泉,聂华林.基于聚类分析法对甘肃农村居民收入区域类型划分[J].干旱区资源与环境,2013,27(5):20-26.
|
23 |
荣慧芳,陈怀录,齐昊聪.甘肃省农业生产条件差异的聚类分析[J].干旱区资源与环境,2010,24(11):39-42.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|