Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (5): 180-189    DOI: 10.7522/j.issn.1000-694X.2020.00075
    
土壤碳循环对地下水位的响应研究进展
苏天燕(),刘文杰,杨秋,毛伟()
海南大学 生态与环境学院,海南 海口 570228
Review on response of soil carbon cycle to groundwater level change
Tianyan Su(),Wenjie Liu,Qiu Yang,Wei Mao()
College of Ecology and Environment,Hainan University,Haikou 570228,China
 全文: PDF(1859 KB)   HTML
摘要:

地下水位通过影响土壤微生物活性、植物根系周转和土壤呼吸速率等改变凋落物和土壤有机质的分解速率与程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去研究集中在温度和降水等影响因素对土壤碳转化过程和碳储量动态等的影响,较少关注地下水位波动引起的变化,尤其缺乏在不同生态系统中地下水位变化后植物根系-微生物-SOC交互作用对土壤碳循环影响的研究。基于此,结合近年国内外土壤碳周转过程相关研究,总结地下水位变化对根系碳分配、微生物群落碳代谢以及土壤呼吸的影响,进一步探讨地下水位与土壤碳循环的动态关系;同时对比研究了地下水位变化后不同生态系统类型土壤有机碳的变化规律。研究将有助于揭示地下水位变化对土壤碳循环动态的调控机制,利于阐明未确定的陆地碳储量,完善陆地生态系统碳循环模型,为应对全球变化提供科学的理论基础。

关键词: 地下水位土壤有机碳土壤微生物植物根系土壤呼吸    
Abstract:

The fluctuation of groundwater tables affects the rate and degree of decomposition of litter and soil organic matter. It affects the microbial activity of soil, the turnover of plant root and the respiration rate of soil, and thus affects the accumulation and loss of SOC (soil organic carbon). The previous research mainly studied the influencing factors, e.g., temperature and precipitation, on the process of soil carbon conversion and the dynamic of carbon stock, lacking the understanding of how soil carbon cycle dynamics in different levels of underground water table due to the interaction of plant root system-microorganism-SOC. Based on this, this paper combined with the recent domestic and foreign soil carbon turnover process related research, summarizes the groundwater table effect on underground carbon distribution of plant roots, carbon metabolism of microbial communities and soil respiration in respective, and analyzes the dynamic relationship between groundwater depth and soil carbon cycle in-depth. The study benefit to reveal the soil carbon cycle dynamics in different groundwater depth, explain the uncertainty of regional terrestrial carbon sink assessment adequately, improve the terrestrial ecosystem carbon cycle model, and provide scientific theoretical support for terrestrial ecosystems to reply to the global changes.

Key words: groundwater depth    soil organic carbon    soil microorganisms    plant roots    soil respiration
收稿日期: 2020-07-07 出版日期: 2020-09-28
ZTFLH:  S153  
基金资助: 国家重点研发计划项目(2018YFD021105);国家自然科学基金项目(41671208);海南大学科研启动基金项目(KYQD20035)
通讯作者: 毛伟     E-mail: 1039244960@qq.com;maow@lzb.ac.cn
作者简介: 苏天燕(1995—),女,海南三亚人,硕士研究生,研究方向为生态系统生态学。E-mail: 1039244960@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏天燕
刘文杰
杨秋
毛伟

引用本文:

苏天燕,刘文杰,杨秋,毛伟. 土壤碳循环对地下水位的响应研究进展[J]. 中国沙漠, 2020, 40(5): 180-189.

Tianyan Su,Wenjie Liu,Qiu Yang,Wei Mao. Review on response of soil carbon cycle to groundwater level change. Journal of Desert Research, 2020, 40(5): 180-189.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00075        http://www.desert.ac.cn/CN/Y2020/V40/I5/180

图1  地下水位对土壤呼吸的影响示意简图箭头粗细代表碳通量大小
陆地生态系统类型土壤碳动态变化文献
草地地下水位与土壤有机碳呈负相关关系[79]
地下水位增加,可利用性氧增加,土壤有机质的分解速率增大[80]
湿地地下水位下降使土壤固碳能力下降[15,107,108]
长期水淹状态下会加快有机质的循环转化过程[58]
长期水淹会缓解有机质的分解和矿化速率,利于有机质积累[61]
长期退水状态会加快有机质分解和矿化速率,增加碳排放[62]
农田淹水处理下碳分解速率大于旱地处理,加快SOC矿化过程[111,113]
淹水处理下大量CH4、CO2排放,好气处理下大量N2O排放[112]
SOC矿化速率和积累速率在淹水条件下比在好气条件下高[114]
表1  地下水位对不同类型陆地生态系统土壤碳的影响
1 陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
2 Eswaran H,Van Den Berg E,Reich P.Organic carbon in soils of the world[J].Soil Science Society of America Journal,1993,57(1):192-194.
3 Scharlemann J P,Tanner E V,Hiederer R,et al.Global soil carbon:understanding and managing the largest terrestrial carbon pool[J].Carbon Management,2014,5(1):81-91.
4 张钊.呼伦贝尔草甸草原生态系统碳循环动态模拟与未来情景分析[D].北京:中国农业科学院,2016.
5 郭洋,李香兰,王秀君,等.干旱半干旱区农田土壤碳垂直剖面分布特征研究[J].土壤学报,2016,53(6):1433-1443.
6 郭振,王小利,段建军,等.长期施肥对黄壤性水稻土有机碳矿化的影响[J].土壤学报,2018,55(1):225-236.
7 陈晓芬,刘明,江春玉,等.红壤性水稻土不同粒级团聚体有机碳矿化及其温度敏感性[J].土壤学报,2019,56(5):1118-1127.
8 吴萌,李忠佩,冯有智,等.长期施肥处理下不同类型水稻土有机碳矿化的动态差异[J].中国农业科学,2016,49(9):1705-1714.
9 侯金鑫,王德,肖鲁湘,等.地下水埋深对土壤水盐、植被影响研究进展[J].鲁东大学学报(自然科学版),2019,35(2):150-156.
10 史小红,李畅游,刘廷玺.科尔沁沙地坨甸相间地区土壤水分空间分布特性分析[J].中国沙漠,2007,27(5):837-842.
11 吴江琪,马维伟,李广,等.尕海沼泽化草甸湿地不同地下水位土壤理化特征的比较分析[J].草地学报,2018,26(2):341-347.
12 Sahrawat K.Organic matter accumulation in submerged soils[J].Advances in Agronomy,2003,81:169-201.
13 翟生强,史长光,杜乐山,等.若尔盖泥炭地地下水位和土壤温度对二氧化碳排放的影响[J].湿地科学,2015,13(3):332-337.
14 黄昌勇.土壤学[M].北京:中国农业出版社,2000.
15 Houghton J E T,Ding Y H,Griggs J,et al.Climate Change 2001:The Scientific Basis[M].Oxford,UK:Cambridge University Press,2001.
16 Sulman B,Desai A,Cook B,et al.Contrasting carbondioxide fluxes between a drying shrub wetland in Northern Wisconsin,USA,and nearby forests[J].Biogeosciences,2009,6(6):1115-1126.
17 Talbot J,Richard P,Roulet N,et al.Assessing long-term hydrological and ecological responses to drainage in araised bog using paleoecology and a hydrosequence[J].Journal of Vegetation Science,2010,21(1):143-156.
18 李丽,高俊琴,雷光春,等.若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律[J].生态学杂志,2011,30(11):2449-2455.
19 欧强,王江涛,周剑虹,等.滨海湿地不同水位梯度下的土壤CO2通量比较[J].应用与环境生物学报,2014,20(6):992-998.
20 侯翠翠,宋长春,李英臣,等.不同水分条件沼泽湿地土壤轻组有机碳与微生物活性动态[J].中国环境科学,2012,32(1):113-119.
21 徐广平,李艳琼,沈育伊,等.桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J].环境科学,2019,40(3):1491-1503.
22 杨桂生,宋长春,王丽,等.水位梯度对小叶章湿地土壤微生物活性的影响[J].环境科学,2010,31(2):444-449.
23 万忠梅.水位对小叶章湿地 CO2、CH4 排放及土壤微生物活性的影响[J].生态环境学报,2013,22(3):465-468.
24 杜紫贤,曾宏达,黄向华,等.城市沿江芦苇湿地土壤呼吸动态及影响因子分析[J].亚热带资源与环境学报,2010,5(3):49-55.
25 武海涛,吕宪国,杨青,等.三江平原湿地岛状林土壤动物群落结构特征及影响因素[J].北京林业大学学报,2008,30(2):50-58.
26 Ryan M G,Law B E.Interpreting measuring and modeling soil respiration[J].Biogeochemistry,2005,73(1):3-27.
27 乔云发,苗淑杰,王树起,等.不同施肥处理对黑土土壤呼吸的影响[J].土壤学报,2007(6):1028-1035.
28 Raich J W,Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus,1992,44(2):81-99.
29 黄锦学,熊德成,刘小飞,等.增温对土壤有机碳矿化的影响研究综述[J].生态学报,2017,37(1):12-24.
30 杨建锋,万书勤.地下水对作物生长影响研究[J].节水灌溉,2002(2):36-38.
31 杨建锋,刘士平,张道宽,等.地下水浅埋条件下土壤水动态变化规律研究[J].灌溉与排水,2001,20(3):25-28.
32 Mao W,Felton A J,Ma Y H,et al.Relationships between aboveground and belowground trait responses of a dominant plant species to alterations in watertable depth[J].Land Degradation & Development,2018,29(11):4015-4024.
33 张爱良,苗果园,王建平.作物根系与水分的关系[J].作物研究,1997(2):4-7.
34 杨轩.宁南山区典型植物根系生产力及根系分解对土壤有机碳和养分的影响[D].陕西杨凌:西北农林科技大学,2019.
35 黄湘.塔里木河下游河道断流对土壤碳释放的影响[J].环境科学与技术,2018,41(5):133-137.
36 Raich J W,Potter C S.Global patterns of carbon dioxide emissions from soils[J].Global Biochemical Cycles,1995(9):23-26.
37 尤龙凤.太原盆地玉米土壤呼吸与环境因子的关系研究[D].太原:山西大学,2006.
38 Martinez C,Alberti G,Cotrufo M F,et al.Belowground carbon allocation patterns as determined by the in-growth soil core 13C technique across different ecosystem types[J].Geoderma,2016,263:140-150.
39 Li X Y,Lin L S,Zhao Q,et al.Inflfluence of groundwater depth on species composition and community structure in the transition zone of Cele oasis[J].Journal of Arid Land,2010,2(4):235-242.
40 Chen Y P,Chen Y N,Xu C C,et al.Photosynthesis and water use effiffifficiency of Populus euphratica in response to changing groundwater depth and CO2 concentration[J].Environment Earth Sciense,2011,62(1):119-125.
41 Gui D W,Zeng F J,Liu Z,et al.Characteristics of the clonal propagation of Alhagi sparsifolia Shap.(Fabaceae) under difffferent groundwater depths in Xinjiang China[J].Rangeland Journal,2013,35:355-362.
42 Li C J,Zeng F J,Zhang B,et al.Optimal root system strategies for desert phreatophytic seedlings in the search for groundwater[J].Arid Land,2015,7:462-474.
43 Imada S,Yamanaka N,Tamai S.Water table depth affects Populus alba fine root growth and whole plant biomass[J].Functional Ecology,2008,22:1018-1026.
44 郭浩,庄伟伟,李进.古尔班通古特沙漠中4种荒漠草本植物的生物量与化学计量特征[J].植物研究,2019,39(3):421-430.
45 杨青华,高尔明,马新明.干旱与渍涝对砂姜黑土玉米根系干重变化及其分布的影响[J].生态学杂志,2000,19(3):28-31.
46 刘波,曾凡江,郭海峰,等.骆驼刺幼苗生长特性对不同地下水埋深的响应[J].生态学杂志,2009,28(2):237-242.
47 罗永清,赵学勇,王涛,等.沙地植物根系特征及其与土壤有机碳和总氮的关系[J].草业学报,2017,26(8):200-206.
48 Asbjornsen H,Shepherd G,Helmers M,et al.Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S[J].Plant and Soil,2008,308(1/2):69-92.
49 Fan Y,Miguez-Macho G,Jobbágy E G,et al.Hydrologic regulation of plant rooting depth[J].Proceedings of the National Academy of Sciences,2017,114 (40):10572-10577.
50 常二华,杨建昌.根系分泌物及其在植物生长中的作用[J].耕作与栽培,2006(5):13-16.
51 肖辉林,彭少麟,郑煜基,等.植物化感物质及化感潜力与土壤养分的相互影响[J].应用生态学报,2006,17(9):1747-1750.
52 和文祥,谭向平,王旭东,等.土壤总体酶活性指标的初步研究[J].土壤学报,2010,47(6):1232-1236.
53 吴旭东,张晓娟,谢应忠,等.不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征[J].草业学报,2013,22(1):245-251.
54 German D P,Chacon S S,Allison S D.Substrate concentration and enzyme allocation can affect rates of microbial decomposition[J].Ecology,2011,92(7):1471-1480.
55 Kirkby C A,Richardson A E,Wade L J,et al.Carbon-nutrient stoichiometry to increase soil carbon sequestration[J].Soil Biology and Biochemistry,2013,60:77-86.
56 Rinnan R,Bth E.Differential utilization of carbon substrates by bacteria and fungi in tundra soil[J].Applied and Environmental Microbiology,2009,75(11):3611-3620.
57 贺云龙,齐玉春,彭琴,等.外源碳输入对陆地生态系统碳循环关键过程的影响及其微生物学驱动机制[J].生态学报,2017,37(2):358-366.
58 邹锋,李金前,韩丽丽,等.鄱阳湖湿地土壤微生物活性对年际水文变化的响应[J].湖泊科学,2019,31(2):551-559.
59 郭佳,蒋先军,周雪,等.三峡库区消落带周期性淹水-落干对硝化微生物生态过程的影响[J].微生物学报,2016,56(6):983-999.
60 Geng Y,Wang D,Yang W.Effects of different inundation periods on soil enzyme activity in riparian zones in Lijiang[J].Catena,2017,149:19-27.
61 Rodriguez-Iturbe I,D'Odorico P,Laio F,et al.Challenges in humidland ecohydrology:interactions of water table and unsaturated zone with climate,soil,and vegetation[J].Water Resources Research,2007,43(9):W09301.
62 Fenner N,Freeman C,Reynolds B.Hydrological effects on the diversity of phenolic degrading bacteria in a peatland:implications for carbon cycling[J].Soil Biology & Biochemistry,2005,37(7):1277-128.
63 Schulze E D,Freibauer A.Environmental science:carbon unlocked from soils[J].Nature,2005,437(7056):205-206.
64 牛佳,周小奇,蒋娜,等.若尔盖高寒湿地干湿土壤条件下微生物群落结构特征[J].生态学报,2011,31(2):474-482.
65 Ma Y,Li J,Wu J,et al.Bacterial and fungal community composition and functional activity associated with lake wetland water level gradients[J].Scientific Reports,2018,8(1):760.
66 闫春妮,黄娟,李稹,等.湿地植物根系及其分泌物对土壤脲酶、硝化-反硝化的影响[J].生态环境学报,2017,26(2):303-308.
67 曾静,李旭,侯志勇,等.洞庭湖湿地 3 种典型植物群落土壤酶活性特征[J].湖泊科学,2017,29(4):907-913.
68 王少先.施肥对稻田湿地土壤碳氮磷库及其相关酶活变化的影响研究[D].杭州:浙江大学,2011.
69 易亚男,尹力初,张蕾.不同地下水位和施肥管理对水稻土有机碳组分的影响[J].生态学杂志,2014,33(5):1284-1289.
70 刘若萱,贺纪正,张丽梅.稻田土壤不同水分条件下硝化/反硝化作用及其功能微生物的变化特征[J].环境科学,2014,35(11):4275-4283.
71 张逸飞,徐婷婷,韩成,等.不同施肥模式和地下水位条件下红壤水稻土PLFA指纹特征[J].生态与农村环境学报,2017,33(6):533-538.
72 程淑兰,方华军,徐梦,等.氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J].生态学报,2018,38(23):8285-8295.
73 覃乾.黄土丘陵区侵蚀坡面土壤有机碳稳定性研究[D].陕西杨凌:西北农林科技大学,2019.
74 Han L,Sun K,Keiluweit M,et al.Mobilization of ferrihydrite-associated organic carbon during Fe reduction:adsorption versus coprecipitation[J].Chemical Geology,2019,503,61-68.
75 Huang W,Ye C,Hockaday W C,et al.Trade-offs in soil carbon protection mechanisms under aerobic and anaerobic conditions[J].Global Change Biology,2020,26:3726-3737.
76 Wang H,Richardson C J,Ho M.Dual controls on carbon loss during drought in peatlands[J].Nature Climate Change,2015(5):584-587.
77 周文昌,崔丽娟,王义飞,等.排水对若尔盖高寒沼泽CO2和CH4排放通量的影响[J].中国环境科学,2019(7):3040-3047.
78 Trenberth K E,Dai A G,Van Der Schrier G,et al.Global warming and changes in drought[J]. Nature Climate Change,2014,4(1):17-22.
79 贡璐,朱美玲,刘曾媛,等.塔里木盆地南缘典型绿洲土壤有机碳、无机碳与环境因子的相关性[J].环境科学,2016,37(4):1516-1522.
80 Straková P,Penttil? T,Laine J,et al.Disentangling direct and indirect effffects of water table drawdown on above-and belowground plant litter decomposition:consequences for accumulation of organic matter in boreal peatlands[J].Global Change Biology,2012,18(1):322-335.
81 Barreto C,Lindo Z.Drivers of decomposition and the detrital invertebrate community diffffer across a hummockhollow microtopology in Boreal peatlands[J].Ecoscience,2018,25(1):39-48.
82 Xue Wei,Rui Cao,Xinwei Wu,et al.Effect of water table decline on the abundances of soil mites,spring tails,and nematodes in the Zoige peatland of eastern Tibetan Plateau[J].Applied Soil Ecology,2018:77-83.
83 Brunner I,Herzog C,Dawes M A,et al.How tree roots respond to drought[J].Frontiers in Plant Science,2015,6:547.
84 Schlesinger W H,Dietze M C,Jackson R B,et al.Forest biogeochemistry in response to drought[J].Global Chang Biology,2016,22(7):2318-2328.
85 Liu Y,Liu S,Wan S,et al.Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest[J].Science of the Total Environment,2016,574:1448-1455.
86 Sotta E D,Veldkamp E,Schwendenmann L,et al.Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest,Brazil[J].Global Change Biology,2007,13(10):2218-2229.
87 Davidson E A,Nepstad D C,Ishida F Y,et al.Effects of an experimental drought and recovery on soil emissions of carbon dioxide,methane,nitrous oxide,and nitric oxide in a moist tropical forest[J].Global Change Biology,2008,14:2582-2590.
88 Schindlbacher A,Wunderlich S,Borken W,et al.Soil respiration under climate change:prolonged summer drought offsets soil warming effects[J].Global Change Biology,2012,18(7):2270-2279.
89 黄长权.向日葵列当寄生机理的研究[D].哈尔滨:东北农业大学,2012.
90 Gaul D,Hertel D,Borken W,et al.Effects of experimental drought on the fine root system of mature Norway spruce[J].Forest Ecology and Management,2008,256(5):1151-1159.
91 Pierret A,Maeght J,Clément C,et al.Understanding deep roots and their functions in ecosystems:an advocacy for more unconventional research[J].Annals of Botany,2016,118(4):621-635.
92 陆海波.降水减少对暖温带锐齿栎林土壤碳循环关键过程的影响[D].北京:中国林业科学院,2017.
93 赵东升,吴绍洪,尹云鹤.气候变化情景下中国自然植被净初级生产力分布[J].应用生态学报,2011,22(4):897-904.
94 张腊梅,刘新平,赵学勇,等.科尔沁固定沙地植被特征对降雨变化的响应[J].生态学报,2014,34(10):2737-2745.
95 张存厚,王明玖,乌兰巴特尔,等.内蒙古典型草原地上净初级生产力对气候变化响应的模拟[J].西北植物学报,2012,32(6):1229-1237.
96 Wang Y,Wang H,He J S,et al.Iron-mediated soil carbon response to water table decline in an alpine wetland[J]. Nat. Commun,2017,8:1-9.
97 曾希柏,黄雪夏,刘子刚,等.种植年限对三江平原农田土壤剖面性质及碳、氮含量的影响[J].中国农业科学,2006,39(6):1186-1195.
98 董李勤,章光新.全球气候变化对湿地生态水文的影响研究综述[J].水科学进展,2011,22(3):429-436.
99 You H,Xu L,Liu G,et al.Effects of inter-annual water level fluctuations on vegetation evolution in typical wetlands of Poyang Lake,China[J].Wetlands,2015,35(5):931-943.
100 Qian K,Liu X,Chen Y.Effects of water level fluctuation on phytoplankton succession in Poyang Lake,China:a five year study[J].Ecohydrology & Hydrobiology,2016,16(3):175-184.
101 Carmignani J R,Roy A H.Ecological impacts of winter water level drawdowns on lake littoral zones:a review[J].Aquatic Sciences,2017,79(4):803-824.
102 Ye F,Wu S,Jiang Y,et al.Shifts of archaeal community structure in soil along an elevation gradient in a reservoir water level fluctuation zone[J].Journal of Soils & Sediments,2016,12(12):1-12.
103 Ye C,Cheng X,Zhang K,et al.Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone[J].Soil Biology & Biochemistry,2017,115:137-147.
104 Argiroff W A,Zak D R,Lanser C M,et al.Microbial community functional potential and composition are shaped by hydrologic connectivity in riverine floodplain soils[J].Microbial Ecology,2017,73(3):1-15.
105 Olefeldt D,Euskirchen E S,Harden J,et al.A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability[J].Global Change Biology,2017,23(6):2428-2440.
106 Moche M,Gutknecht J,Schulz E,et al.Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils[J].Soil Biology & Biochemistry,2015,90:169-178.
107 Kasimir-Klemedtsson A,Klemedtsson L,Bergelund K,et al.Greenhouse gas emissions from farmed organic soils:a review[J].Soil Use and Management,1997,13(S4):245-250.
108 Koulainen V M,Tuittila E S,Vasander H,et al.Restoration of drained peatlands in southern Finland:Initial effects on vegetation change and CO2 balance[J].Journal of Applied Ecology,1999,36:634-648.
109 李易麟.西北干旱区黑河中游土壤有机碳含量的主要影响因素研究[D].兰州:兰州大学,2008.
110 Shibu M E,Leffelaar P A,Van Keulen H,et al.Quantitative description of soil organic matter dynamics:a review of approaches with reference to rice-based cropping systems[J].Geoderma,2006,137(1/2):1-18.
111 黄东迈,朱培立,王志明,等.旱地和水田有机碳分解速率的探讨与质疑[J].土壤学报,1998,35(4):482-491.
112 蔡祖聪.水分类型对土壤排放的温室气体组成和综合温室效应的影响[J].土壤学报,1999,36(4):484-491.
113 张敬智,马超,郜红建.淹水和好气条件下东北稻田黑土有机碳矿化和微生物群落演变规律[J].农业环境科学学报,2017(6):1160-1166.
114 王嫒华,苏以荣,李杨,等.水田和旱地土壤有机碳周转对水分的响应[J].中国农业科学,2012,45(2):266-274.
115 赵荣钦,秦明周.中国沿海地区农田生态系统部分碳源/汇时空差异[J].生态与农村环境学报,2007,23(2):1-6,11.
116 王静,冯永忠,杨改河,等.山西农田生态系统碳源/汇时空差异分析[J].西北农林科技大学学报(自然科学版),2010,38(1):195-200.
[1] 赵成政, 王亚军, 谢忠奎, 张玉宝, 郭志鸿, 邱阳, 华翠平, 周丽靖. 砾石长期覆盖对土壤呼吸的影响[J]. 中国沙漠, 2020, 40(2): 232-239.
[2] 马晓俊, 李云飞. 腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性[J]. 中国沙漠, 2019, 39(6): 159-166.
[3] 张梦旭, 刘蔚, 朱猛, 李若麟. 甘肃河西山地土壤有机碳储量及分布特征[J]. 中国沙漠, 2019, 39(4): 64-72.
[4] 苏永中, 杨荣, 刘婷娜. 施肥对新垦绿洲风沙土肥力及碳积累的影响[J]. 中国沙漠, 2019, 39(3): 1-6.
[5] 马立群, 刘廷玺, 王冠丽, 段利民, 韩春雪, 何韬. 沙丘差巴嘎蒿(Artemisia halodendron)群落与裸地土壤呼吸特征[J]. 中国沙漠, 2019, 39(3): 66-76.
[6] 范虹, 赵财, 胡发龙, 肖凯, 柴强. 土壤含水量、种植模式和丁香酚对土壤微生物种群结构的影响[J]. 中国沙漠, 2019, 39(2): 13-18.
[7] 杨航宇, 刘长仲, 刘艳梅, 杨昊天. 荒漠区踩踏生物土壤结皮对土壤微生物量的影响[J]. 中国沙漠, 2019, 39(2): 35-44.
[8] 李婷, 张威, 刘光琇, 陈拓. 荒漠土壤微生物群落结构特征研究进展[J]. 中国沙漠, 2018, 38(2): 329-338.
[9] 杨航宇, 刘艳梅, 王廷璞, 回嵘. 生物土壤结皮对荒漠区土壤微生物数量和活性的影响[J]. 中国沙漠, 2017, 37(5): 950-960.
[10] 牛瑞雪, 刘继亮, 胡彦萍, 付英. 黑河中游不同土地覆被类型土壤呼吸及对水热因子的响应[J]. 中国沙漠, 2017, 37(5): 961-969.
[11] 石万里, 王辉, 马维伟. 沙区植被恢复对土壤微生物量及活性的影响[J]. 中国沙漠, 2017, 37(3): 507-513.
[12] 高亮, 高永, 王静, 罗凤敏, 吕新丰. 土地覆盖类型对科尔沁沙地南缘土壤有机碳储量的影响[J]. 中国沙漠, 2016, 36(5): 1357-1364.
[13] 杨洁, 刘冉, 马杰, 唐立松, 李彦. 古尔班通古特沙漠南缘梭梭(Haloxylon ammodendron)群落土壤呼吸对生态系统呼吸的贡献[J]. 中国沙漠, 2016, 36(3): 726-733.
[14] 朱猛, 刘蔚, 秦燕燕, 曹建军, 李会亚, 赵玉. 祁连山森林草原带坡面尺度土壤有机碳分布[J]. 中国沙漠, 2016, 36(3): 741-748.
[15] 孙殿超, 李玉霖, 赵学勇, 毛伟, 岳祥飞. 放牧及围封对科尔沁沙质草地土壤呼吸的影响[J]. 中国沙漠, 2015, 35(6): 1620-1627.