Please wait a minute...
img

官方微信

高级检索
中国沙漠  2019, Vol. 39 Issue (6): 159-166    DOI: 10.7522/j.issn.1000-694X.2019.00059
    
腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性
马晓俊1,2, 李云飞1,2
1. 中国科学院西北生态环境资源研究院 沙坡头沙漠研究试验站, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049
Soil Microbial Biomass and Enzyme Activities during Revegetation Process in the Southeastern Fringe of the Tengger Desert
Ma Xiaojun1,2, Li Yunfei1,2
1. Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3374 KB)  
摘要: 土壤微生物量和酶活性是反映土壤功能的关键指标,也是土壤恢复和环境变化的指示器。以流动沙丘为对照,研究了腾格里沙漠东南缘人工固沙植被区表层0~5、5~10、10~20 cm土壤微生物量碳氮和酶活性随植被恢复的变化特征。结果显示:土壤微生物碳氮含量和脲酶、多酚氧化酶、碱性磷酸酶、过氧化氢酶、淀粉酶、纤维素酶、蔗糖酶活性均随植被恢复年限延长而增大,随土层深度增加而减小,不同年代植被区及不同土层间差异均显著(P<0.05)。其中0~5 cm土层变化最明显,经过62年植被恢复后土壤微生物碳氮量和脲酶、多酚氧化酶、碱性磷酸酶、过氧化氢酶、淀粉酶、纤维素酶、蔗糖酶活性分别增加了16.44、8.79、3.99、3.01、2.54、19.35、0.77、0.65、16.61倍,年平均变化速率分别为1.55、0.21 mg·kg-1和6.14×10-4、1.25×10-2、9.32×10-4、6.05×10-2、8.22×10-5、9.07×10-5、4.24×10-3 mg·g-1·h-1。土壤微生物量和酶活性与土壤理化性质高度相关,除与沙粒、容重呈负相关关系外,与土壤粉粒、黏粒、pH、电导率、有机碳、无机碳、全氮、碱解氮、速效磷和速效钾含量呈正相关关系。这表明种植旱生灌木能够有效促进沙地土壤功能恢复并改善沙区环境。
关键词: 土壤微生物量土壤酶植被恢复腾格里沙漠    
Abstract: Soil microbial biomass and soil enzyme activities are key indicators of soil function and indicators of soil recovery and environmental changes. The dynamic patterns of soil microbial biomass carbon and nitrogen and soil enzyme activities in different soil layers (0-5, 5-10 and 10-20 cm) at revegetated areas in the southeastern fringe of the Tengger Desert, respectively, were investigated by taking moving sand dune as control. The results showed that:The soil microbial biomass carbon, microbial biomass nitrogen, urease, polyphenol oxidase, alkaline phosphatase, catalase, amylase, cellulase and sucrase all increased with the increasing restoration age, and decreased with the increasing soil depth, significant differences were found among different revegetated areas and different soil layers (P<0.05). And 0-5 cm soil layer changes most obviously. After 62-year-revegetation,the soil microbial biomass carbon, microbial biomass nitrogen, urease, polyphenol oxidase, alkaline phosphatase, catalase, amylase, cellulase and sucrase increased by 16.44, 8.79, 3.99, 3.01, 2.54, 19.35, 0.77, 0.65 and 16.61 times,and their average annual rate of change is 1.55, 0.21 mg·kg-1 and 6.14×10-4, 1.25×10-2, 9.32×10-4, 6.05×10-2, 8.22×10-5, 9.07×10-5, 4.24×10-3 mg·g-1·h-1 respectively. The soil microbial biomass carbon and nitrogen and soil enzyme activities were highly positive correlated with silt and clay content, pH, electronic conductivity, the concentrations of organic carbon, inorganic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium, while negatively correlated with sand and bulk density. The results showed that planting xerophytic shrubs can effectively promote the restoration of sandy soil function and improve the environment in the sandy area.
Key words: soil microbial biomass    soil enzyme    vegetation restoration    Tengger Desert
收稿日期: 2019-01-30 出版日期: 2019-11-14
:  Q938.1  
基金资助: 国家自然科学基金项目(41671111)
作者简介: 马晓俊(1993-),男,甘肃兰州人,硕士研究生,主要从事干旱区土壤生态学研究。E-mail:mrmxj@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马晓俊
李云飞

引用本文:

马晓俊, 李云飞. 腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性[J]. 中国沙漠, 2019, 39(6): 159-166.

Ma Xiaojun, Li Yunfei. Soil Microbial Biomass and Enzyme Activities during Revegetation Process in the Southeastern Fringe of the Tengger Desert. Journal of Desert Research, 2019, 39(6): 159-166.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2019.00059        http://www.desert.ac.cn/CN/Y2019/V39/I6/159

[1] 李新荣,赵洋,回嵘,等.中国干旱区恢复生态学研究进展及趋势评述[J].地理科学进展,2014,33(11):1435-1443.
[2] Li X J,Yang H T,Shi W L,et al. Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert,Northern China[J].Catena,2018,169:11-20.
[3] Li X J,Li X R,Wang X P,et al.Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the Tengger Desert, Northern China[J].European Journal of Soil Science,2016,67(2):184-195.
[4] Li X J,Li X R,Song W,et al.Effects of crust and shrub patches on runoff,sedimentation,and related nutrient (C,N) redistribution in the desertified steppe zone of the Tengger Desert,Northern China[J].Geomorphology,2008,96(1):221-232.
[5] He N P,Wu L,Wang Y S,et al.Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in Northern China[J].Geoderma,2009,150(3):302-308.
[6] 李新荣,张志山,刘玉冰,等.中国沙区生态重建与恢复的生态水文学基础[M].北京:科学出版社,2016.
[7] Elsas J D V.Microbiological and biochemical properties[J].Scientia Horticulturae,1995,63(1):131-133.
[8] Quilchano C,Marañón T.Dehydrogenase activity in Mediterranean forest soils[J].Biology and Fertility of Soils,2002,35(2):102-107.
[9] 刘艳梅,杨航宇,李新荣.生物土壤结皮对荒漠区土壤微生物生物量的影响[J].土壤学报,2014,51(2):394-401.
[10] Acosta-martínez V,Cruz L,Sotomayor-ramírez D,et al.Enzyme activities as affected by soil properties and land use in a tropical watershed[J].Applied Soil Ecology,2007,35(1):35-45.
[11] Desserud P A,Naeth M A.Natural recovery of rough fescue (Festuca hallii (vasey) piper) grassland after disturbance by pipeline construction in central Alberta,Canada[J].Natural Areas Journal,2013,33(1):91-98.
[12] 李晓红.鄱阳湖湿地不同植物群落土壤养分和土壤酶活性垂直分布特征[J].水土保持研究,2019,26(1):69-75,81.
[13] Ge C,Xue D,Yao H.Microbial biomass,community diversity, and enzyme activities in response to urea application in tea orchard soils[J].Communications in Soil Science and Plant Analysis,2010,41(7):797-810.
[14] Cao C Y,Jiang D M,Teng X H,et al.Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam.plantations in the Horqin sandy land of Northeast China[J].Applied Soil Ecology,2008,40(1):78-85.
[15] Zhang Y L,Chen L J,Chen X H,et al. Response of soil enzyme activity to long-term restoration of desertified land[J].Catena,2015,133:64-70.
[16] 石万里,王辉,马维伟.沙区植被恢复对土壤微生物量及活性的影响[J].中国沙漠,2017,37(3):507-513.
[17] Schlesinger W H,Pilmanis A M.Plant-soil interaction in deserts[J].Biogeochemistry,1998,42(1):169-187.
[18] 李新荣.干旱沙区土壤空间异质性变化对植被恢复的影响[J].中国科学,2005,35(4):361-370.
[19] Lan S B,Ouyang H L,Wu L,et al.Biological soil crust community types differ in photosynthetic pigment composition,fluorescence and carbon fixation in Shapotou region of China[J]. Applied Soil Ecology,2017,111:9-16.
[20] Zhang T,Jia R L,Yu L Y.Diversity and distribution of soil fungal communities associated with biological soil crusts in the southeastern Tengger Desert (China) as revealed by 454 pyrosequencing[J]. Fungal Ecology,2016,23:156-163.
[21] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[22] Blank R R.Amidohydrolase activity,soil N status,and the invasive crucifer Lepidium latifolium[J]. Plant and Soil,2002,239(1):155-163.
[23] Su Y Z,L Y L,C J Y,et al.Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland,Inner Mongolia,northern China[J].Catena,2005,59(3):270-278.
[24] Li J,Tong X,Awasthi M K,et al.Dynamics of soil microbial biomass and enzyme activities along a chronosequence of desertified land revegetation[J].Ecological Engineering,2018,111:22-30.
[25] Brockett B F,Prescott C E,Grayston S J.Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in Western Canada[J]. Soil Biology and Biochemistry,2012,44(1):9-20.
[26] An S S, Huang Y M, Zheng F L. Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau,Northwest China[J].Applied Soil Ecology,2009,41(3):286-292.
[27] 杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159.
[28] Li X R,Xiao H L,Zhang J G,et al.Long-term ecosystem effects of sand-binding vegetation in the Tengger Desert, Northern China[J].Restoration Ecology,2004,12(3):376-390.
[29] Liu Y M,Yang H Y,Li X R,et al.Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert,China[J].Applied Soil Ecology,2014,80:6-14.
[30] Enowashu E,Poll C,Lamersdorf N,et al.Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil[J].Applied Soil Ecology,2009,43(1):11-21.
[31] Li X R.Influence of variation of soil spatial heterogeneity on vegetation restoration[J].Science in China,2005,48(11):2020.
[32] Petr B,Josef T,Jan F,et al.Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining[J]. Soil Biology and Biochemistry,2008,40(9):2107-2115.
[1] 王文帆, 刘任涛, 郭志霞, 冯永宏, 蒋嘉瑜. 腾格里沙漠东南缘固沙灌丛林土壤理化性质及分形维数[J]. 中国沙漠, 2021, 41(1): 209-218.
[2] 王炳尧, 刘星辰, 刘立超. 1957—2017年腾格里沙漠地区降水量[J]. 中国沙漠, 2020, 40(4): 163-170.
[3] 陈应武, 陈庆霄, 杨昊天. 腾格里沙漠陆生野生脊椎动物多样性及区系[J]. 中国沙漠, 2020, 40(4): 171-182.
[4] 颜长珍, 李森, 逯军峰, 刘立超. 1975—2015年腾格里沙漠湖泊面积与数量[J]. 中国沙漠, 2020, 40(4): 183-189.
[5] 马全林, 张锦春, 陈芳, 张德魁, 魏林源. 腾格里沙漠南缘花棒(Hedysarum scoparium)人工固沙林演替规律与机制[J]. 中国沙漠, 2020, 40(4): 206-215.
[6] 陈应武, 陈庆霄, 杨昊天. 腾格里沙漠昆虫多样性及区系特征[J]. 中国沙漠, 2020, 40(4): 216-222.
[7] 李得禄, 马全林, 张锦春, 陈芳, 李新荣, 袁宏波, 魏林源, 杨昊天, 张忠. 腾格里沙漠植被特征[J]. 中国沙漠, 2020, 40(4): 223-233.
[8] 王岩松, 刘玉冰, 王增如, 赵丽娜, 漆婧华, 张雯莉. 生物土壤结皮铁代谢微生物组成及其功能基因对演替的响应[J]. 中国沙漠, 2020, 40(3): 193-200.
[9] 赵雅姣, 刘晓静, 吴勇, 童长春. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征[J]. 中国沙漠, 2020, 40(3): 219-228.
[10] 杨利贞, 冯丽, 杨贵森, 黄磊. 柠条(Caragana korshinskii)、油蒿(Artemisia ordosica)、花棒(Hedysarum scoparium)叶片吸水潜力及影响因素[J]. 中国沙漠, 2020, 40(2): 214-221.
[11] 李云飞, 谢婷, 石万里, 李小军. 腾格里沙漠东南缘人工固沙植被区表层土壤有机碳矿化对凋落物添加的响应[J]. 中国沙漠, 2019, 39(5): 200-209.
[12] 刘艳梅, 杨航宇, 贾荣亮, 李宜轩. 人为踩踏生物土壤结皮对土壤酶活性的影响[J]. 中国沙漠, 2019, 39(4): 54-63.
[13] 杨航宇, 刘长仲, 刘艳梅, 杨昊天. 荒漠区踩踏生物土壤结皮对土壤微生物量的影响[J]. 中国沙漠, 2019, 39(2): 35-44.
[14] 曹志宏, 安成邦, 高信娟. 1426—1949年腾格里沙漠边缘区旱涝灾害初探[J]. 中国沙漠, 2019, 39(1): 171-178.
[15] 张正偲, 董治宝, 管梦鸾. 腾格里沙漠东南缘反向沙丘形态演化过程[J]. 中国沙漠, 2018, 38(4): 709-715.